Inhibition effect of arachidonic acid on hypoxia-induced [Ca(2+)](i) elevation in PC12 cells and human pulmonary artery smooth muscle cells.

F Meng, WK To, Yuchun Gu

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

[Ca(2+)](i) elevation is a key event when O(2) sensitive cells, e.g. PC12 cells and pulmonary artery smooth muscle cells, face hypoxia. Ca(2+) entry pathways in mediating hypoxia-induced [Ca(2+)](i) elevation include: voltage-gated Ca(2+) channels (VGCCs), transient receptor potential (TRP) channel and Na(+)-Ca(2+) ex-changer (NCX). In the pulmonary artery, accumulated evidence strongly suggests that prostaglandins (PGs) are involved in pulmonary inflammation and cause vasoconstriction during hypoxia. In this study, we investigated the effect of arachidonic acid (AA), the upstream substrate for PGs, on hypoxia response in O(2) sensitive cells. Exogenous application of AA significantly inhibited hypoxia-induced [Ca(2+)](i) elevation. This effect was due to AA itself rather than its degenerative products. The pharmacological modulation of endogenous AA showed that the prevention of AA generation by blockage of cPLA2, diacylglycerol (DAG) lipase and fatty acid hydrolysis (FAAH), augments hypoxia-induced [Ca(2+)](i) elevation, whereas prevention of AA degeneration attenuates hypoxia-induced [Ca(2+)](i) elevation. Over-expression of COX2 enhances hypoxia-induced [Ca(2+)](i) elevation and this enhancement is reversed by exogenous AA. Our results suggest that AA inhibits hypoxia response. The dynamic alterations in cellular lipids might determine cell response to hypoxia.
Original languageEnglish
Pages (from-to)18-23
Number of pages6
JournalRespiratory physiology & neurobiology
Volume162
Issue number1
DOIs
Publication statusPublished - 30 Jun 2008

Keywords

  • human pulmonary artery smooth muscle cell
  • intracellular Ca2+
  • arachidonic acid
  • PC12
  • hypoxia

Fingerprint

Dive into the research topics of 'Inhibition effect of arachidonic acid on hypoxia-induced [Ca(2+)](i) elevation in PC12 cells and human pulmonary artery smooth muscle cells.'. Together they form a unique fingerprint.

Cite this