TY - JOUR
T1 - Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans
AU - Ainslie, P.N.
AU - Lucas, S.J.E.
AU - Fan, J.-L.
AU - Thomas, K.N.
AU - Cotter, J.D.
AU - Tzeng, Y.C.
AU - Burgess, K.R.
PY - 2012/10
Y1 - 2012/10
N2 - We sought to determine the influence of sympathoexcitation on dynamic cerebral autoregulation (CA), cerebrovascular reactivity, and ventilatory control in humans at high altitude (HA). At sea level (SL) and following 3-10 days at HA (5,050 m), we measured arterial blood gases, ventilation, arterial pressure, and middle cerebral blood velocity (MCAv) before and after combined α- and β-adrenergic blockade. Dynamic CA was quantified using transfer function analysis. Cerebrovascular reactivity was assessed using hypocapnia and hyperoxic hypercapnia. Ventilatory control was assessed from the hypercapnia and during isocapnic hypoxia. Arterial Pco(2) and ventilation and its control were unaltered following blockade at both SL and HA. At HA, mean arterial pressure (MAP) was elevated (P < 0.01 vs. SL), but MCAv remained unchanged. Blockade reduced MAP more at HA than at SL (26 vs. 15%, P = 0.048). At HA, gain and coherence in the very-low-frequency (VLF) range (0.02-0.07 Hz) increased, and phase lead was reduced (all P < 0.05 vs. SL). Following blockade at SL, coherence was unchanged, whereas VLF phase lead was reduced (-40 ± 23%; P < 0.01). In contrast, blockade at HA reduced low-frequency coherence (-26 ± 20%; P = 0.01 vs. baseline) and elevated VLF phase lead (by 177 ± 238%; P < 0.01 vs. baseline), fully restoring these parameters back to SL values. Irrespective of this elevation in VLF gain at HA (P < 0.01), blockade increased it comparably at SL and HA (∼43-68%; P < 0.01). Despite elevations in MCAv reactivity to hypercapnia at HA, blockade reduced (P < 0.05) it comparably at SL and HA, effects we attributed to the hypotension and/or abolition of the hypercapnic-induced increase in MAP. With the exception of dynamic CA, we provide evidence of a redundant role of sympathetic nerve activity as a direct mechanism underlying changes in cerebrovascular reactivity and ventilatory control following partial acclimatization to HA. These findings have implications for our understanding of CBF function in the context of pathologies associated with sympathoexcitation and hypoxemia.
AB - We sought to determine the influence of sympathoexcitation on dynamic cerebral autoregulation (CA), cerebrovascular reactivity, and ventilatory control in humans at high altitude (HA). At sea level (SL) and following 3-10 days at HA (5,050 m), we measured arterial blood gases, ventilation, arterial pressure, and middle cerebral blood velocity (MCAv) before and after combined α- and β-adrenergic blockade. Dynamic CA was quantified using transfer function analysis. Cerebrovascular reactivity was assessed using hypocapnia and hyperoxic hypercapnia. Ventilatory control was assessed from the hypercapnia and during isocapnic hypoxia. Arterial Pco(2) and ventilation and its control were unaltered following blockade at both SL and HA. At HA, mean arterial pressure (MAP) was elevated (P < 0.01 vs. SL), but MCAv remained unchanged. Blockade reduced MAP more at HA than at SL (26 vs. 15%, P = 0.048). At HA, gain and coherence in the very-low-frequency (VLF) range (0.02-0.07 Hz) increased, and phase lead was reduced (all P < 0.05 vs. SL). Following blockade at SL, coherence was unchanged, whereas VLF phase lead was reduced (-40 ± 23%; P < 0.01). In contrast, blockade at HA reduced low-frequency coherence (-26 ± 20%; P = 0.01 vs. baseline) and elevated VLF phase lead (by 177 ± 238%; P < 0.01 vs. baseline), fully restoring these parameters back to SL values. Irrespective of this elevation in VLF gain at HA (P < 0.01), blockade increased it comparably at SL and HA (∼43-68%; P < 0.01). Despite elevations in MCAv reactivity to hypercapnia at HA, blockade reduced (P < 0.05) it comparably at SL and HA, effects we attributed to the hypotension and/or abolition of the hypercapnic-induced increase in MAP. With the exception of dynamic CA, we provide evidence of a redundant role of sympathetic nerve activity as a direct mechanism underlying changes in cerebrovascular reactivity and ventilatory control following partial acclimatization to HA. These findings have implications for our understanding of CBF function in the context of pathologies associated with sympathoexcitation and hypoxemia.
KW - Adult
KW - Altitude
KW - Anoxia
KW - Arterial Pressure
KW - Blood Flow Velocity
KW - Carbon Dioxide
KW - Cerebral Cortex
KW - Cerebrovascular Circulation
KW - Female
KW - Homeostasis
KW - Humans
KW - Hypercapnia
KW - Hypocapnia
KW - Male
KW - Middle Cerebral Artery
KW - Pulmonary Ventilation
KW - Respiration
KW - Sympathetic Nervous System
UR - http://www.scopus.com/inward/record.url?partnerID=yv4JPVwI&eid=2-s2.0-84866985432&md5=8342b8c5a9382dbe201e379d91633856
U2 - 10.1152/japplphysiol.00463.2012
DO - 10.1152/japplphysiol.00463.2012
M3 - Article
C2 - 22837165
AN - SCOPUS:84866985432
SN - 8750-7587
VL - 113
SP - 1058
EP - 1067
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 7
ER -