Indefinite proximity learning: A review

Frank Michael Schleif, Peter Tino

Research output: Contribution to journalArticlepeer-review

48 Citations (Scopus)


Efficient learning of a data analysis task strongly depends on the data representation. Most methods rely on (symmetric) similarity or dissimilarity representations by means of metric inner products or distances, providing easy access to powerful mathematical formalisms like kernel or branch-and-bound approaches. Similarities and dissimilarities are, however, often naturally obtained by nonmetric proximity measures that cannot easily be handled by classical learning algorithms. Major efforts have been undertaken to provide approaches that can either directly be used for such data or to make standard methods available for these types of data. We provide a comprehensive survey for the field of learning with nonmetric proximities. First, we introduce the formalism used in nonmetric spaces and motivate specific treatments for nonmetric proximity data. Second, we provide a systematization of the various approaches. For each category of approaches, we provide a comparative discussion of the individual algorithms and address complexity issues and generalization properties. In a summarizing section, we provide a larger experimental study for the majority of the algorithms on standard data sets. We also address the problem of large-scale proximity learning, which is often overlooked in this context and of major importance to make the method relevant in practice. The algorithms we discuss are in general applicable for proximity-based clustering, one-class classification, classification, regression, and embedding approaches. In the experimental part, we focus on classification tasks.

Original languageEnglish
Pages (from-to)2039-2096
Number of pages58
JournalNeural Computation
Issue number10
Publication statusPublished - 21 Oct 2015

ASJC Scopus subject areas

  • Cognitive Neuroscience
  • Arts and Humanities (miscellaneous)


Dive into the research topics of 'Indefinite proximity learning: A review'. Together they form a unique fingerprint.

Cite this