Increased exogenous but unaltered endogenous carbohydrate oxidation with combined fructose-maltodextrin ingested at 120 g h−1 versus 90 g h−1 at different ratios

Tim Podlogar, Špela Bokal, Simon Cirnski, Gareth A. Wallis

Research output: Contribution to journalArticlepeer-review

67 Downloads (Pure)

Abstract

Purpose

This study aimed to investigate whether carbohydrate ingestion during 3 h long endurance exercise in highly trained cyclists at a rate of 120 g h−1 in 0.8:1 ratio between fructose and glucose-based carbohydrates would result in higher exogenous and lower endogenous carbohydrate oxidation rates as compared to ingestion of 90 g h−1 in 1:2 ratio, which is the currently recommended approach for exercise of this duration.
Methods

Eleven male participants (V̇O2peak 62.6 ± 7 mL kg−1 min−1, gas exchange threshold (GET) 270 ± 17 W and Respiratory compensation point 328 ± 32 W) completed the study involving 4 experimental visits consisting of 3 h cycling commencing after an overnight fast at an intensity equivalent to 95% GET. During the trials they received carbohydrates at an average rate of 120 or 90 g h−1 in 0.8:1 or 1:2 fructose-maltodextrin ratio, respectively. Carbohydrates were naturally high or low in 13C stable isotopes enabling subsequent calculations of exogenous and endogenous carbohydrate oxidation rates.
Results

Exogenous carbohydrate oxidation rates were higher in the 120 g h−1 condition (120–180 min: 1.51 ± 0.22 g min−1) as compared to the 90 g h−1 condition (1.29 ± 0.16 g min−1; p = 0.026). Endogenous carbohydrate oxidation rates did not differ between conditions (2.15 ± 0.30 and 2.20 ± 0.33 g min−1 for 120 and 90 g h−1 conditions, respectively; p = 0.786).
Conclusions

The results suggest that carbohydrate ingestion at 120 g h−1 in 0.8:1 fructose-maltodextrin ratio as compared with 90 g h−1 in 1:2 ratio offers higher exogenous carbohydrate oxidation rates but no additional sparing of endogenous carbohydrates. Further studies should investigate potential performance effects of such carbohydrate ingestion strategies.
Original languageEnglish
Pages (from-to)2393-2401
Number of pages9
JournalEuropean Journal of Applied Physiology
Volume122
Issue number11
DOIs
Publication statusPublished - 11 Aug 2022

Keywords

  • Carbohydrate supplementation
  • Carbohydrates
  • Endurance exercise
  • Exercise metabolism
  • Exogenous carbohydrate oxidation

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine
  • Public Health, Environmental and Occupational Health
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Increased exogenous but unaltered endogenous carbohydrate oxidation with combined fructose-maltodextrin ingested at 120 g h−1 versus 90 g h−1 at different ratios'. Together they form a unique fingerprint.

Cite this