TY - JOUR
T1 - Incorporation of biogenic zinc nanoparticles into a polymeric membrane
T2 - impact on the capture of organic herbicides
AU - Shad, Salma
AU - Bashir, Nadia
AU - Nault, Marie-France Belinga-Desaunay
AU - Lynch, Iseult
PY - 2021/12
Y1 - 2021/12
N2 - Nanoparticle incorporated membranes are potential tools to remove hazardous organic pollutants from drinking water sources. Cellulose acetate membranes were impregnated by incorporating zinc nanoparticles, produced using a green synthesis with Mentha plant extract utilizing microwave energy. The synthesized nanoparticles were extensively characterized using ultraviolet–visible spectroscopy, X-ray diffraction, Scanning electron microscopy, energy dispersive X-ray spectroscopy and Nanoparticle tracking analysis. The spectroscopy results showed an absorbance peak at 300 nm, confirming the successful synthesis, while X-ray diffraction confirmed that the particles are crystalline with a mean particle size of 36 nm. The surface roughness and topography of the zinc nanoparticle impregnated membranes was studied using atomic force microscopy to check the homogeneity of dispersion of the nanoparticles in the membrane. The efficiency of the zinc nanoparticles and the zinc nanoparticle loaded cellulose acetate membranes for adsorption of organic herbicides such as metolachlor and acetochlor was studied. The particles themselves and the particle-embedded membranes proved to be very adsorbent due to their unique structural properties, providing large surface area and high adsorption capacity. The incorporation of zinc nanoparticles into the membrane decreased the time needed for the removal of the selected herbicides relative to that of the nanoparticles alone, and provides a promising method for water purification.
AB - Nanoparticle incorporated membranes are potential tools to remove hazardous organic pollutants from drinking water sources. Cellulose acetate membranes were impregnated by incorporating zinc nanoparticles, produced using a green synthesis with Mentha plant extract utilizing microwave energy. The synthesized nanoparticles were extensively characterized using ultraviolet–visible spectroscopy, X-ray diffraction, Scanning electron microscopy, energy dispersive X-ray spectroscopy and Nanoparticle tracking analysis. The spectroscopy results showed an absorbance peak at 300 nm, confirming the successful synthesis, while X-ray diffraction confirmed that the particles are crystalline with a mean particle size of 36 nm. The surface roughness and topography of the zinc nanoparticle impregnated membranes was studied using atomic force microscopy to check the homogeneity of dispersion of the nanoparticles in the membrane. The efficiency of the zinc nanoparticles and the zinc nanoparticle loaded cellulose acetate membranes for adsorption of organic herbicides such as metolachlor and acetochlor was studied. The particles themselves and the particle-embedded membranes proved to be very adsorbent due to their unique structural properties, providing large surface area and high adsorption capacity. The incorporation of zinc nanoparticles into the membrane decreased the time needed for the removal of the selected herbicides relative to that of the nanoparticles alone, and provides a promising method for water purification.
KW - Acetochlor
KW - Adsorption
KW - Cellulose acetate
KW - Metolachlor
KW - Topography
UR - http://www.scopus.com/inward/record.url?scp=85119289959&partnerID=8YFLogxK
U2 - 10.1016/j.clet.2021.100339
DO - 10.1016/j.clet.2021.100339
M3 - Article
VL - 5
JO - Cleaner Engineering and Technology
JF - Cleaner Engineering and Technology
M1 - 100339
ER -