TY - JOUR
T1 - Inactivation of Corynebacterium glutamicum NCgl0452 and the Role of MgtA in the Biosynthesis of a Novel Mannosylated Glycolipid Involved in Lipomannan Biosynthesis
AU - Tatituri, RVV
AU - Illarionov, Petr
AU - Dover, Lynn
AU - Nigou, J
AU - Gilleron, M
AU - Hitchen, P
AU - Krumbach, K
AU - Morris, HR
AU - Spencer, N
AU - Dell, A
AU - Eggeling, L
AU - Besra, Gurdyal
PY - 2006/11/27
Y1 - 2006/11/27
N2 - Mycobacterium tuberculosis PimB has been demonstrated to catalyze the addition of a mannose residue from GDP-mannose to a monoacylated phosphatidyl-myo-inositol mannoside (Ac(1)PIM(1)) to generate Ac(1)PIM(2). Herein, we describe the disruption of its probable orthologue Cg-pimB and the chemical analysis of glycolipids and lipoglycans isolated from wild type Corynebacterium glutamicum and the C. glutamicum::pimB mutant. Following a careful analysis, two related glycolipids, Gl-A and Gl-X, were found in the parent strain, but Gl-X was absent from the mutant. The biosynthesis of Gl-X was restored in the mutant by complementation with either Cg-pimB or Mt-pimB. Subsequent chemical analyses established Gl-X as 1,2-di-O-C(16)/C(18:1)-(alpha-d-mannopyranosyl)-(1-->4)-(alpha-d-glucopyranosyluronic acid)-(1-->3)-glycerol (ManGlcAGroAc(2)) and Gl-A as the precursor, GlcAGroAc(2). In addition, C. glutamicum::pimB was still able to produce Ac(1)PIM(2), suggesting that Cg-PimB catalyzes the synthesis of ManGlcAGroAc(2) from GlcAGroAc(2). Isolation of lipoglycans from C. glutamicum led to the identification of two related lipoglycans. The larger lipoglycan possessed a lipoarabinomannan-like structure, whereas the smaller lipoglycan was similar to lipomannan (LM). The absence of ManGlcA-GroAc(2) in C. glutamicum::pimB led to a severe reduction in LM. These results suggested that ManGlcAGroAc(2) was further extended to an LM-like molecule. Complementation of C. glutamicum::pimB with Cg-pimB and Mt-pimB led to the restoration of LM biosynthesis. As a result, Cg-PimB, which we have assigned as MgtA, is now clearly defined as a GDP-mannose-dependent alpha-mannosyltransferase from our in vitro analyses and is involved in the biosynthesis of ManGlcAGroAc(2).
AB - Mycobacterium tuberculosis PimB has been demonstrated to catalyze the addition of a mannose residue from GDP-mannose to a monoacylated phosphatidyl-myo-inositol mannoside (Ac(1)PIM(1)) to generate Ac(1)PIM(2). Herein, we describe the disruption of its probable orthologue Cg-pimB and the chemical analysis of glycolipids and lipoglycans isolated from wild type Corynebacterium glutamicum and the C. glutamicum::pimB mutant. Following a careful analysis, two related glycolipids, Gl-A and Gl-X, were found in the parent strain, but Gl-X was absent from the mutant. The biosynthesis of Gl-X was restored in the mutant by complementation with either Cg-pimB or Mt-pimB. Subsequent chemical analyses established Gl-X as 1,2-di-O-C(16)/C(18:1)-(alpha-d-mannopyranosyl)-(1-->4)-(alpha-d-glucopyranosyluronic acid)-(1-->3)-glycerol (ManGlcAGroAc(2)) and Gl-A as the precursor, GlcAGroAc(2). In addition, C. glutamicum::pimB was still able to produce Ac(1)PIM(2), suggesting that Cg-PimB catalyzes the synthesis of ManGlcAGroAc(2) from GlcAGroAc(2). Isolation of lipoglycans from C. glutamicum led to the identification of two related lipoglycans. The larger lipoglycan possessed a lipoarabinomannan-like structure, whereas the smaller lipoglycan was similar to lipomannan (LM). The absence of ManGlcA-GroAc(2) in C. glutamicum::pimB led to a severe reduction in LM. These results suggested that ManGlcAGroAc(2) was further extended to an LM-like molecule. Complementation of C. glutamicum::pimB with Cg-pimB and Mt-pimB led to the restoration of LM biosynthesis. As a result, Cg-PimB, which we have assigned as MgtA, is now clearly defined as a GDP-mannose-dependent alpha-mannosyltransferase from our in vitro analyses and is involved in the biosynthesis of ManGlcAGroAc(2).
U2 - 10.1074/jbc.M608695200
DO - 10.1074/jbc.M608695200
M3 - Article
C2 - 17179146
SN - 0021-9258
VL - 282
SP - 4561
EP - 4572
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 7
ER -