Projects per year
Abstract
Hemodialysis catheters are used to support blood filtration, yet there are multiple fundamentally different approaches to catheter tip design with no clear optimal solution. Side-holes have been shown to increase flow rates and decrease recirculation but have been associated with clotting/increased infection rates. This study investigates the impact of changing the shape, size and number of side-holes on a simple symmetric tip catheter by evaluating the velocity, shear stress and shear rate of inflowing blood. A platelet model is used to examine the residence time and shear history of inflowing platelets. The results show that side-holes improve the theoretical performance of the catheters, reducing the maximum velocity and shear stress occurring at the tip compared to non-side-hole catheters. Increasing the side-hole area improved performance up to a point, past which not all inflow through the hole was captured, and instead a small fraction slowly 'washed-out' through the remainder of the tip resulting in greater residence times and increasing the likelihood of platelet adhesion. An oval shaped hole presents a lower chance of external fibrin formation compared to a circular hole, although this would also be influenced by the catheter material surface topology which is dependent on the manufacturing process. Overall, whilst side-holes may be associated with increased clotting and infection, this can be reduced when side-hole geometry is correctly implemented though; a sufficient area for body diameter (minimising residence time) and utilising angle-cut, oval shaped holes (reducing shear stress and chances of fibrin formation partially occluding holes).
Original language | English |
---|---|
Article number | e0236946 |
Journal | PLoS ONE |
Volume | 15 |
Issue number | 8 |
DOIs | |
Publication status | Published - 7 Aug 2020 |
Keywords
- Blood Flow Velocity
- Blood Platelets/cytology
- Catheters/statistics & numerical data
- Computational Biology
- Computer Simulation
- Equipment Design
- Hemodynamics
- Humans
- Hydrodynamics
- Models, Cardiovascular
- Platelet Adhesiveness
- Renal Dialysis/instrumentation
Fingerprint
Dive into the research topics of 'Impact of side-hole geometry on the performance of hemodialysis catheter tips: A computational fluid dynamics assessment'. Together they form a unique fingerprint.Projects
- 1 Finished
-
IAA2017 - Using Computational Fluid Dynamics to design novel tips for Kimal PLC dialysis catheters
Espino, D. (Principal Investigator) & Green, N. (Co-Investigator)
Engineering & Physical Science Research Council, KIMAL PLC
23/04/18 → 1/07/19
Project: Research