Abstract
Surface topography and hydrogen permeation properties of Porous Stainless Steel (PSS) substrates for thin films deposition of Pd-based hydrogen separation membrane were investigated. Hydrogen permeance through the as received PSS substrates demonstrated a wide range, despite a similar average surface pore size of ~15 μm determined by SEM and confocal laser microscopy analyses. The surface pores of the PSS substrates were modified by impregnation of varying amounts of tungsten (W) powder. Maximum hydrogen flux reduction of 28% suggested that W has a limited effect on the hydrogen permeation through the PSS substrate. Therefore, it appears that hydrogen transport through PSS substrates is mainly controlled by the substrate geometrical factor (ετ), that is the ratio of the porosity to tortuosity. In addition, tungsten was shown to inhibit the iron inter-diffusion between the PSS substrate and the deposited Pd60Cu40 film at temperature as high as 800 °C. Thus, tungsten layer also serves as an effective inter-diffusion barrier. The variation in the permeance between the nominally similar PSS substrates indicates the importance to independently assess the hydrogen transport characteristics of each of the components in a composite membrane.
Original language | English |
---|---|
Pages (from-to) | 22-28 |
Number of pages | 7 |
Journal | Journal of Membrane Science |
Volume | 515 |
Early online date | 25 May 2016 |
DOIs | |
Publication status | Published - 1 Oct 2016 |
Keywords
- Composite membrane
- Hydrogen separation
- Palladium-based membrane
- Porous stainless steel
- Surface modification
ASJC Scopus subject areas
- Physical and Theoretical Chemistry
- General Materials Science
- Biochemistry
- Filtration and Separation