HP vane aerodynamics and heat transfer in the presence of aggressive inlet swirl

Imran Qureshi*, Andy D. Smith, Thomas Povey

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Citations (Scopus)

Abstract

Modern lean burn combustors now employ aggressive swirlers to enhance fuel-air mixing and improve flame stability. The flow at combustor exit can therefore have high residual swirl. A good deal of research concerning the flow within the combustor is available in open literature. The impact of swirl on the aerodynamic and heat transfer characteristics of a HP turbine stage is not well understood, however. A combustor swirl simulator has been designed and commissioned in the Oxford Turbine Research Facility (OTRF), previously located at QinetiQ, Farnborough UK. The swirl simulator is capable of generating an engine-representative combustor exit swirl pattern. At the turbine inlet plane, yaw and pitch angles of over +/-40 degrees have been simulated. The turbine research facility used for the study is an engine scale, short duration, rotating transonic turbine, in which the non-dimensional parameters for aerodynamics and heat transfer are matched to engine conditions. The research turbine was the unshrouded MT1 design. By design, the centre of the vortex from the swirl simulator can be clocked to any circumferential position with respect to HP vane, and the vortex-to-vane count ratio is 1:2. For the current investigation, the clocking position was such that the vortex centre was aligned with the vane leading edge (every second vane). Both the aligned vane and the adjacent vane were characterised. This paper presents measurements of HP vane surface and endwall heat transfer for the two vane positions. The results are compared with measurements conducted without swirl. The vane surface pressure distributions are also presented. The experimental measurements are compared with full-stage three-dimensional unsteady numerical predictions obtained using the Rolls Royce in-house code Hydra. The aerodynamic and heat transfer characterisation presented in this paper is the first of its kind, and it is hoped to give some insight into the significant changes in the vane flow and heat transfer that occur in the current generation of low NOx combustors. The findings not only have implications for the vane aerodynamic design, but also for the cooling system design.

Original languageEnglish
Title of host publicationASME 2011 Turbo Expo
Subtitle of host publicationTurbine Technical Conference and Exposition, GT2011
Pages1925-1942
Number of pages18
EditionPARTS A AND B
DOIs
Publication statusPublished - 1 Dec 2011
EventASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011 - Vancouver, BC, Canada
Duration: 6 Jun 201110 Jun 2011

Publication series

NameProceedings of the ASME Turbo Expo
NumberPARTS A AND B
Volume5

Conference

ConferenceASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011
Country/TerritoryCanada
CityVancouver, BC
Period6/06/1110/06/11

Keywords

  • Aerothermodynamics
  • Combustor Swirl
  • Heat transfer
  • HP NGV
  • Stator
  • Transonic turbine
  • Turbulence
  • Vane

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'HP vane aerodynamics and heat transfer in the presence of aggressive inlet swirl'. Together they form a unique fingerprint.

Cite this