TY - JOUR
T1 - GO-nafion composite membrane development for enabling intermediate temperature operation of polymer electrolyte fuel cell
AU - Ibrahim, Ahmed
AU - Chaggar, Jagjit
AU - Hussain, Oheen
AU - Steinberger-Wilckens, Robert
AU - El-Kharouf, Ahmad
PY - 2019/6/25
Y1 - 2019/6/25
N2 - Increasing Polymer Electrolyte Fuel Cells’ (PEFCs) operating temperature has benefits on the performance and the ease of utilisation of the heat generated; however, efforts for high temperature PEFCs have resulted in high degradation and reduced life time. In the literature, conventional low temperature (T < 80 °C) and high temperature (140–200 °C) regimes have been extensively studied, while the gap of operating at intermediate temperature (IT) (100–120 °C) has been scarcely explored.
The main bottleneck for operating at IT conditions is the development of a suitable proton exchange membrane with comparable performance and lifetime to the commercially used Nafion operating at conventional conditions. In this work, composite membranes of Graphene Oxide (GO) and Nafion of varied thickness were fabricated, characterised and assessed for in-situ single cell performance under automotive operating conditions at conventional and intermediate temperatures.
The material characterisation confirmed that a composite GO-Nafion structure was achieved. The composite membrane demonstrated higher mechanical strength, enhanced water uptake, and higher performance. It was demonstrated that by utilising GO-Nafion composite membranes, an up to 20% increase in the maximum power density at all operating temperatures can be achieved, with the optimum performance is obtained at 100 °C. Moreover, the GO-Nafion membrane was able to maintain its open circuit voltage values at increased temperature and reduced thickness, indicating better durability and potentially higher lifetime.
AB - Increasing Polymer Electrolyte Fuel Cells’ (PEFCs) operating temperature has benefits on the performance and the ease of utilisation of the heat generated; however, efforts for high temperature PEFCs have resulted in high degradation and reduced life time. In the literature, conventional low temperature (T < 80 °C) and high temperature (140–200 °C) regimes have been extensively studied, while the gap of operating at intermediate temperature (IT) (100–120 °C) has been scarcely explored.
The main bottleneck for operating at IT conditions is the development of a suitable proton exchange membrane with comparable performance and lifetime to the commercially used Nafion operating at conventional conditions. In this work, composite membranes of Graphene Oxide (GO) and Nafion of varied thickness were fabricated, characterised and assessed for in-situ single cell performance under automotive operating conditions at conventional and intermediate temperatures.
The material characterisation confirmed that a composite GO-Nafion structure was achieved. The composite membrane demonstrated higher mechanical strength, enhanced water uptake, and higher performance. It was demonstrated that by utilising GO-Nafion composite membranes, an up to 20% increase in the maximum power density at all operating temperatures can be achieved, with the optimum performance is obtained at 100 °C. Moreover, the GO-Nafion membrane was able to maintain its open circuit voltage values at increased temperature and reduced thickness, indicating better durability and potentially higher lifetime.
KW - Composite membranes
KW - Intermediate temperature
KW - Medium temperature
KW - PEFC
KW - PEM
UR - http://www.scopus.com/inward/record.url?scp=85067673258&partnerID=8YFLogxK
U2 - 10.1016/j.ijhydene.2019.05.210
DO - 10.1016/j.ijhydene.2019.05.210
M3 - Article
SN - 0360-3199
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
ER -