GMM-VRD: a gaussian mixture model for dealing with virtual and real concept drifts

Gustavo H.F.M. Oliveira, Leandro Minku, Adriano L. I. Oliveira

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)
305 Downloads (Pure)


Concept drift is a change in the joint probability distribution of the problem. This term can be subdivided into two types: real drifts that affect the conditional probabilities p(y|x) or virtual drifts that affect the unconditional probability distribution p(x). Most existing work focuses on dealing with real concept drifts. However, virtual drifts can also cause degradation in predictive performance, requiring mechanisms to be tackled. Moreover, as virtual drifts frequently mean that part of the old knowledge remains useful, they require different strategies from real drifts to be effectively tackled. Motivated on this, we propose an approach called Gaussian Mixture Model for Dealing With Virtual and Real Concept Drifts (GMM-VRD), which updates and creates Gaussians to tackle virtual drifts and resets the system to deal with real drifts. The main results show that the proposed approach obtained the best results, in terms of average accuracy, in relation to the literature methods, which propose to solve that same problem. In terms of accuracy over time, the proposed approach showed lower degradation on concept drifts, which indicates that the proposed approach was efficient.
Original languageEnglish
Title of host publication2019 International Joint Conference on Neural Networks (IJCNN)
PublisherIEEE Computer Society
Number of pages8
ISBN (Print)978-1-7281-2009-6
Publication statusPublished - 30 Sept 2019
Event International Joint Conference on Neural Networks (IJCNN 2019) - Budapest, Hungary
Duration: 14 Jul 201919 Jul 2019


Conference International Joint Conference on Neural Networks (IJCNN 2019)


  • Gaussian mixture model
  • data streams
  • virtual concept drift
  • real concept drift


Dive into the research topics of 'GMM-VRD: a gaussian mixture model for dealing with virtual and real concept drifts'. Together they form a unique fingerprint.

Cite this