TY - JOUR
T1 - Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system
AU - Ingle, Patrick
AU - Groothuis, Daphne
AU - Rowe, Peter
AU - Huang, He
AU - Cockayne, Alan
AU - Kuehne, Sarah
AU - Jiang, Weihong
AU - Gu, Yang
AU - Humphreys, Christopher M.
AU - Minton, Nigel P.
PY - 2019/5/31
Y1 - 2019/5/31
N2 - Understanding the molecular pathogenesis of Clostridioides difficile has relied on the use of ermB-based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, including virulence. CRISPR-Cas9 allows the direct selection of mutants, reducing the number of subcultures and thereby minimising the likelihood of acquiring additional mutations. Accordingly, CRISPR-Cas9 was used to sequentially remove from the C. difficile 630 reference strain (NCTC 13307) two ermB genes and pyrE. The genomes of the strains generated (630Δerm* and 630Δerm*ΔpyrE, respectively) contained no ancillary mutations compared to the NCTC 13307 parental strain, making these strains the preferred option where erythromycin-sensitive 630 strains are required. Intriguingly, the cas9 gene of the plasmid used contained a proximal frameshift mutation. Despite this, the frequency of mutant isolation was high (96% and 89% for ermB and pyrE, respectively) indicating that a functional Cas9 is still being produced. Re-initiation of translation from an internal AUG start codon would produce a foreshortened protein lacking a RuvCI nucleolytic domain, effectively a ‘nickase’. The mutation allowed cas9 to be cloned downstream of the strong Pthl promoter. It may find application elsewhere where the use of strong, constitutive promoters is preferred.
AB - Understanding the molecular pathogenesis of Clostridioides difficile has relied on the use of ermB-based mutagens in erythromycin-sensitive strains. However, the repeated subcultures required to isolate sensitive variants can lead to the acquisition of ancillary mutations that affect phenotype, including virulence. CRISPR-Cas9 allows the direct selection of mutants, reducing the number of subcultures and thereby minimising the likelihood of acquiring additional mutations. Accordingly, CRISPR-Cas9 was used to sequentially remove from the C. difficile 630 reference strain (NCTC 13307) two ermB genes and pyrE. The genomes of the strains generated (630Δerm* and 630Δerm*ΔpyrE, respectively) contained no ancillary mutations compared to the NCTC 13307 parental strain, making these strains the preferred option where erythromycin-sensitive 630 strains are required. Intriguingly, the cas9 gene of the plasmid used contained a proximal frameshift mutation. Despite this, the frequency of mutant isolation was high (96% and 89% for ermB and pyrE, respectively) indicating that a functional Cas9 is still being produced. Re-initiation of translation from an internal AUG start codon would produce a foreshortened protein lacking a RuvCI nucleolytic domain, effectively a ‘nickase’. The mutation allowed cas9 to be cloned downstream of the strong Pthl promoter. It may find application elsewhere where the use of strong, constitutive promoters is preferred.
UR - http://www.scopus.com/inward/record.url?scp=85066488435&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-44458-y
DO - 10.1038/s41598-019-44458-y
M3 - Article
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 8123
ER -