TY - JOUR
T1 - Galactan biosynthesis in Mycobacterium tuberculosis: Identification of a bifunctional UDP-galactofuranosyltransferase
AU - Kremer, L
AU - Dover, Lynn
AU - Morehouse, C
AU - Hitchin, P
AU - Everett, M
AU - Morris, HR
AU - Dell, A
AU - Brennan, PJ
AU - McNeil, MR
AU - Flaherty, C
AU - Duncan, K
AU - Besra, Gurdyal
PY - 2001/7/6
Y1 - 2001/7/6
N2 - The cell wall of Mycobacterium tuberculosis and related genera is unique among prokaryotes, consisting of a covalently bound complex of mycolic acids, D-arabinan and D-galactan, which is linked to peptidoglycan via a special linkage unit consisting of Rhap-(1-->3)-GlcNAc-P. Information concerning the biosynthesis of this entire polymer is now emerging with the promise of new drug targets against tuberculosis. Accordingly, we have developed a galactosyltransferase assay that utilizes the disaccharide neoglycolipid acceptors beta-d-Galf-(1-->5)-beta-D-Galf-O-C(10:1) and beta-D-Galf-(1-->6)-beta-D-Galf-O-C(10:1), with UDP-Gal in conjunction with isolated membranes. Chemical analysis of the subsequent reaction products established that the enzymatically synthesized products contained both beta-D-Galf linkages ((1-->5) and (1-->6)) found within the mycobacterial cell, as well as in an alternating (1-->5) and (1-->6) fashion consistent with the established structure of the cell wall. Furthermore, through a detailed examination of the M. tuberculosis genome, we have shown that the gene product of Rv3808c, now termed glfT, is a novel UDP-galactofuranosyltransferase. This enzyme possesses dual functionality in performing both (1-->5) and (1-->6) galactofuranosyltransferase reactions with the above neoglycolipid acceptors, using membranes isolated from the heterologous host Escherichia coli expressing Rv3808c. Thus, at a biochemical and genetic level, the polymerization of the galactan region of the mycolyl-arabinogalactan complex has been defined, allowing the possibility of further studies toward substrate recognition and catalysis and assay development. Ultimately, this may also lead to a more rational approach to drug design to be explored in the context of mycobacterial infections.
AB - The cell wall of Mycobacterium tuberculosis and related genera is unique among prokaryotes, consisting of a covalently bound complex of mycolic acids, D-arabinan and D-galactan, which is linked to peptidoglycan via a special linkage unit consisting of Rhap-(1-->3)-GlcNAc-P. Information concerning the biosynthesis of this entire polymer is now emerging with the promise of new drug targets against tuberculosis. Accordingly, we have developed a galactosyltransferase assay that utilizes the disaccharide neoglycolipid acceptors beta-d-Galf-(1-->5)-beta-D-Galf-O-C(10:1) and beta-D-Galf-(1-->6)-beta-D-Galf-O-C(10:1), with UDP-Gal in conjunction with isolated membranes. Chemical analysis of the subsequent reaction products established that the enzymatically synthesized products contained both beta-D-Galf linkages ((1-->5) and (1-->6)) found within the mycobacterial cell, as well as in an alternating (1-->5) and (1-->6) fashion consistent with the established structure of the cell wall. Furthermore, through a detailed examination of the M. tuberculosis genome, we have shown that the gene product of Rv3808c, now termed glfT, is a novel UDP-galactofuranosyltransferase. This enzyme possesses dual functionality in performing both (1-->5) and (1-->6) galactofuranosyltransferase reactions with the above neoglycolipid acceptors, using membranes isolated from the heterologous host Escherichia coli expressing Rv3808c. Thus, at a biochemical and genetic level, the polymerization of the galactan region of the mycolyl-arabinogalactan complex has been defined, allowing the possibility of further studies toward substrate recognition and catalysis and assay development. Ultimately, this may also lead to a more rational approach to drug design to be explored in the context of mycobacterial infections.
UR - http://www.scopus.com/inward/record.url?scp=0035854786&partnerID=8YFLogxK
U2 - 10.1074/jbc.M102022200
DO - 10.1074/jbc.M102022200
M3 - Article
C2 - 11304545
SN - 1083-351X
VL - 276
SP - 26430
EP - 26440
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 28
ER -