TY - JOUR
T1 - Further studies of the enhanced nuclear magnet HoVO4 I. The crystal field and the Zeeman spectrum
AU - Bleaney, B
AU - Gregg, JF
AU - Hansen, P
AU - Huan, CHA
AU - Lazzouni, M
AU - Leask, MJM
AU - Morris, ID
AU - Wells, MR
PY - 1988/3/8
Y1 - 1988/3/8
N2 - A novel approach is adopted to fit the experimental results for the Van Vleck paramagnet HoVO4. Within the ground manifold 5I8, J = 8, the five parameters for a crystal field of tetragonal symmetry are adjusted to give values in agreement with the optical spectrum for the lowest energy levels: the ground singlet, the first excited doublet at 21 cm-1, and the (accidental) triplet at 47 cm-1. Within experimental error (of order 1 cm-1), this agreement is not impaired by a small modification in which all the crystal field parameters are multiplied by a factor 1.0225. This factor is introduced to give the correct value of the enhanced nuclear magnetic resonance frequency for the stable isotope 165Ho (I = 7/2), known to 0.3% (Bleaney et al. Proc. R. Soc. Lond. A 362, 179 (1978)). The optical Zeeman effect, calculated therefrom, is in good agreement with that observed experimentally for the lowest levels in magnetic fields up to 15 T, directed along the [100], [110] and [001] axes (Battison et al. Phys. Lett. A 55, 173 (1975); J. Phys. C 10, 323 (1977)).
AB - A novel approach is adopted to fit the experimental results for the Van Vleck paramagnet HoVO4. Within the ground manifold 5I8, J = 8, the five parameters for a crystal field of tetragonal symmetry are adjusted to give values in agreement with the optical spectrum for the lowest energy levels: the ground singlet, the first excited doublet at 21 cm-1, and the (accidental) triplet at 47 cm-1. Within experimental error (of order 1 cm-1), this agreement is not impaired by a small modification in which all the crystal field parameters are multiplied by a factor 1.0225. This factor is introduced to give the correct value of the enhanced nuclear magnetic resonance frequency for the stable isotope 165Ho (I = 7/2), known to 0.3% (Bleaney et al. Proc. R. Soc. Lond. A 362, 179 (1978)). The optical Zeeman effect, calculated therefrom, is in good agreement with that observed experimentally for the lowest levels in magnetic fields up to 15 T, directed along the [100], [110] and [001] axes (Battison et al. Phys. Lett. A 55, 173 (1975); J. Phys. C 10, 323 (1977)).
U2 - 10.1098/rspa.1988.0026
DO - 10.1098/rspa.1988.0026
M3 - Article
SN - 0080-4630
VL - 416
SP - 63
EP - 73
JO - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
JF - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
IS - 1850
ER -