Friction coefficients for droplets on solids: the liquid–solid Amontons’ laws

Glen McHale, Nan Gao, Gary Wells, Hernan Barrio-Zhang, Rodrigo Ledesma-Aguilar

Research output: Contribution to journalArticlepeer-review

240 Downloads (Pure)

Abstract

The empirical laws of dry friction between two solid bodies date back to the work of Amontons in 1699 and are pre-dated by the work of Leonardo da Vinci. Fundamental to those laws are the concepts of static and kinetic coefficients of friction relating the pinning and sliding friction forces along a surface to the normal load force. For liquids on solid surfaces, contact lines also experience pinning and the language of friction is used when droplets are in motion. However, it is only recently that the concept of coefficients of friction has been defined in this context and that droplet friction has been discussed as having a static and a kinetic regime. Here, we use surface free energy considerations to show that the frictional force per unit length of a contact line is directly proportional to the normal component of the surface tension force. We define coefficients of friction for both contact lines and droplets and provide a droplet analogy of Amontons’ first and second laws but with the normal load force of a solid replaced by the normal surface tension force of a liquid. In the static regime, the coefficient of static friction, defined by the maximum pinning force of a droplet, is proportional to the contact angle hysteresis, whereas in the kinetic regime, the coefficient of kinetic friction is proportional to the difference in dynamic advancing and receding contact angles. We show the consistency between the droplet form of Amontons’ first and second laws and an equation derived by Furmidge. We use these liquid–solid Amontons’ laws to describe literature data and report friction coefficients for various liquid–solid systems. The conceptual framework reported here should provide insight into the design of superhydrophobic, slippery liquid-infused porous surfaces (SLIPS) and other surfaces designed to control droplet motion.
Original languageEnglish
Pages (from-to)4425–4433
JournalLangmuir
Volume38
Issue number14
Early online date30 Mar 2022
DOIs
Publication statusPublished - 12 Apr 2022

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Friction coefficients for droplets on solids: the liquid–solid Amontons’ laws'. Together they form a unique fingerprint.

Cite this