Abstract
OBJECTIVES: To investigate the movement of resin matrix with respect to the filler particles of filled composites during their photo cure without or with polymerization contraction stress (PCS). METHODS: Two types of composites were prepared. Glass beads as macroscopic fillers were placed into the center of a bis-GMA/TEGDMA resin to make single bead-embedding "composites" and a variety of fillers of different compositions, sizes, and shapes were mixed with another bis-GMA/TEGDMA resin to make lightly filled composites. They were photo cured in a cavity constructed with an acrylic or aluminum ring sitting on a polyester strip. Bonding to the ring constrained the polymerization shrinkage and thus produced a PCS. The formation of gaps between the filler and the resin was detected by optical microscopy for the glass bead-resin systems, and by light attenuation and scanning electron microscopy (SEM) for the filler-resin composites. RESULTS: In general, for composites with untreated fillers, the optical microscopy and SEM revealed gaps at the filler-resin interface only when they were cured under constrained shrinkage conditions. These composites attenuated more light when cured under constrained shrinkage conditions than when under non-constrained conditions. For the composites with silane-treated fillers, no gaps were observed. Some did not show any significant difference in light attenuation when cured under either constrained or non-constrained conditions. CONCLUSIONS: The resin tends to move away from the filler particles under the influence of PCS. Strengthening the filler-resin interaction, such as by the use of silane-treated filler, may help prevent the resin departure and thus the formation of gaps.
Original language | English |
---|---|
Pages (from-to) | 719-729 |
Number of pages | 11 |
Journal | Dental Materials |
Volume | 26 |
Issue number | 8 |
Early online date | 2 Jun 2010 |
DOIs | |
Publication status | Published - 1 Aug 2010 |