First observation and measurement of the branching fraction for the decay B0s → D∗∓sK±

LHCb Collaboration, R. Aaij, B. Adeva, M. Adinolfi, A. Affolder, Z. Ajaltouni, S. Akar, J. Albrecht, F. Alessio, M. Alexander, S. Ali, G. Alkhazov, P. Alvarez Cartelle, A. A. Alves, S. Amato, S. Amerio, Y. Amhis, L. An, L. Anderlini, J. AndersonM. Andreotti, J. E. Andrews, R. B. Appleby, O. Aquines Gutierrez, F. Archilli, A. Artamonov, M. Artuso, E. Aslanides, G. Auriemma, M. Baalouch, S. Bachmann, J. J. Back, A. Badalov, C. Baesso, W. Baldini, R. J. Barlow, C. Barschel, S. Barsuk, W. Barter, V. Batozskaya, V. Battista, A. Bay, S. Bifani, N. Farley, P. Griffith, I. R. Kenyon, C. Lazzeroni, A. Mazurov, J. McCarthy, L. Pescatore, N. K. Watson

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
91 Downloads (Pure)

Abstract

The first observation of the B0s → D∗∓sK± decay is reported using 3.0 fb−1 of proton-proton collision data collected by the LHCb experiment. The D∗∓s mesons are reconstructed through the decay chain D∗∓s → γDs (KK±π). The branching fraction relative to that for B0s → D∗−sπ+ decays is measured to be B(B0s → D∗∓sK±)/B(B0s → D∗−sπ+) = 0.068±0.005+0.003−0.002, where the first uncertainty is statistical and the second is systematic. Using a recent measurement of B(B0s → D∗−sπ+), the absolute branching fraction of B0s → D∗∓sK± is measured as B(B0s → D∗∓sK±) = (16.3±1.2(stat)+0.7−0.5(syst)±4.8(norm))×10−5, where the third uncertainty is due to the uncertainty on the branching fraction of the normalisation channel. 

Original languageEnglish
Article number130
Number of pages15
JournalJournal of High Energy Physics
Volume2015
Issue number6
DOIs
Publication statusPublished - 18 Jun 2015

Keywords

  • B physics
  • Branching fraction
  • Flavor physics
  • Hadron-Hadron Scattering

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'First observation and measurement of the branching fraction for the decay B0s → D∗∓sK±'. Together they form a unique fingerprint.

Cite this