Finding the minimum rate of innovation in the presence of noise

Christopher Gilliam, Thierry Blu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)

Abstract

Recently, sampling theory has been broadened to include a class of non-bandlimited signals that possess finite rate of innovation (FRI). In this paper, we consider the problem of determining the minimum rate of innovation (RI) in a noisy setting. First, we adapt a recent model-fitting algorithm for FRI recovery and demonstrate that it achieves the Cramer-Rao bounds. Using this algorithm, we then present a framework to estimate the minimum RI based on fitting the sparsest model to the noisy samples whilst satisfying a mean squared error (MSE) criterion - a signal is recovered if the output MSE is less than the input MSE. Specifically, given a RI, we use the MSE criterion to judge whether our model-fitting has been a success or a failure. Using this output, we present a Dichotomic algorithm that performs a binary search for the minimum RI and demonstrate that it obtains a sparser RI estimate than an existing information criterion approach.

Original languageEnglish
Title of host publication2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages4019-4023
Number of pages5
ISBN (Electronic)9781479999880
DOIs
Publication statusPublished - 18 May 2016
Event41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Shanghai, China
Duration: 20 Mar 201625 Mar 2016

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2016-May
ISSN (Print)1520-6149

Conference

Conference41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016
Country/TerritoryChina
CityShanghai
Period20/03/1625/03/16

Bibliographical note

Publisher Copyright:
© 2016 IEEE.

Keywords

  • Finite rate of innovation
  • model order
  • model-fitting
  • recovery of Dirac pulses
  • sampling theory

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Finding the minimum rate of innovation in the presence of noise'. Together they form a unique fingerprint.

Cite this