Abstract
We study Fano schemes Fk(X) for complete intersections X in a projective toric variety Y ⊂ Pn. Our strategy is to decompose Fk(X) into closed subschemes based on the irreducible decomposition of Fk(Y ) as studied by Ilten and Zotine. We define the “expected dimension” for these subschemes, which always gives a lower bound on the actual dimension. Under additional assumptions, we show that these subschemes are non-empty and smooth of the expected dimension. Using tools from intersection theory, we can apply these results to count the number of linear subspaces in X when the expected dimension of Fk(X) is zero.
| Original language | English |
|---|---|
| Journal | Mathematische Zeitschrift |
| Early online date | 18 Aug 2021 |
| DOIs | |
| Publication status | Published - 18 Aug 2021 |
ASJC Scopus subject areas
- General Mathematics