Explosive eruptions with little warning: experimental petrology and volcano monitoring observations from the 2014 eruption of Kelud, Indonesia

Michael Cassidy, S K Ebmeier, C Helo, Sebastian Watt, C Caudron, A Odell, K Spaans, P Kristianto, H Triastuty, H Gunawan, J M Castro

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
290 Downloads (Pure)

Abstract

Explosive eruptions that occur with little or no precursory unrest (<month) pose the greatest hazards from volcanoes to nearby populations. Here we focus on the pre‐eruptive conditions for these explosive events, their triggers and how these eruptions evolve. We concentrate on Kelud volcano, where we have conducted a set of petrological experiments to understand pre‐eruptive storage conditions for several recent eruptions. For the 2014 explosive eruption, we combine this with an analysis of InSAR measured deformation. Our data suggest that both explosive and effusive eruptions at Kelud are sourced from a magma storage system at 2‐4 km. However, explosive eruptions are fed by magma stored under relatively cool (~1000° C) and water‐saturated conditions, whereas effusive eruptions are fed by slightly hotter (~1050° C), water‐undersaturated magmas. We propose that the initial phase of the 2014 eruption was triggered by volatile overpressure, which then fostered top‐down decompression tapping discrete magma bodies. By compiling a global dataset of monitoring signatures of explosive eruptions, we show that the onset of unrest rarely points to the shallow ascent of magma to the surface, as ascent mostly occurs in a matter of hours or minutes. We relate the timescale of pre‐eruptive unrest to eruption triggering mechanisms, with yearly/decadal periods of unrest relating to magma injection events (which may or may not precede a magmatic eruption), whereas internal triggering (e.g. second boiling) of an already present, cooling magma body can lead to explosive eruptions with little warning.
Original languageEnglish
JournalGeochemistry Geophysics Geosystems
Volume20
Early online date30 Jul 2019
DOIs
Publication statusPublished - 29 Aug 2019

Keywords

  • Explosive eruptions
  • Petrology
  • InSAR
  • unrest
  • Volcano
  • magma

Fingerprint

Dive into the research topics of 'Explosive eruptions with little warning: experimental petrology and volcano monitoring observations from the 2014 eruption of Kelud, Indonesia'. Together they form a unique fingerprint.

Cite this