TY - JOUR
T1 - Exploitation of a chemical nuclease to investigate the location and orientation of the Escherichia coli RNA polymerase alpha subunit C-terminal domain at simple promoters that are activated by CRP
AU - Lee, David
AU - Busby, Stephen
AU - Lloyd, Georgina
PY - 2003/10/28
Y1 - 2003/10/28
N2 - The C-terminal domain of the alpha subunit (alphaCTD) of bacterial RNA polymerase plays an important role in promoter recognition. It is known that alphaCTD binds to the DNA minor groove at different locations at different promoters via a surface-exposed determinant, the 265 determinant. Here we describe experiments that permit us to determine the location and orientation of binding of alphaCTD at any promoter. In these experiments, a DNA cleavage reagent is attached to specific locations on opposite faces of the RNA polymerase alpha subunit. After incorporation of the tagged alpha subunits into holo-RNA polymerase, patterns of DNA cleavage due to the reagent are determined in open complexes. The locations of DNA cleavage due to the reagent attached at different positions allow the position and orientation of alphaCTD to be deduced. Here we present data from experiments with simple Escherichia coli promoters that are activated by the cyclic AMP receptor protein.
AB - The C-terminal domain of the alpha subunit (alphaCTD) of bacterial RNA polymerase plays an important role in promoter recognition. It is known that alphaCTD binds to the DNA minor groove at different locations at different promoters via a surface-exposed determinant, the 265 determinant. Here we describe experiments that permit us to determine the location and orientation of binding of alphaCTD at any promoter. In these experiments, a DNA cleavage reagent is attached to specific locations on opposite faces of the RNA polymerase alpha subunit. After incorporation of the tagged alpha subunits into holo-RNA polymerase, patterns of DNA cleavage due to the reagent are determined in open complexes. The locations of DNA cleavage due to the reagent attached at different positions allow the position and orientation of alphaCTD to be deduced. Here we present data from experiments with simple Escherichia coli promoters that are activated by the cyclic AMP receptor protein.
UR - http://www.scopus.com/inward/record.url?scp=0347993054&partnerID=8YFLogxK
U2 - 10.1074/jbc.M308300200
DO - 10.1074/jbc.M308300200
M3 - Article
C2 - 14530288
SN - 1083-351X
VL - 278
SP - 52944
EP - 52952
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 52
ER -