Experimental analysis of the bending response of soft gripper fingers

Khaled Elgeneidy, Niels Lohse, Michael Jackson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper a common design for soft actuators with internal pneumatic networks is analysed for the application of passively compliant soft gripper fingers, which can effectively grasp complex and delicate objects. The behaviour of a soft finger upon actuation is primarily determined through its predefined morphology. Hence, understanding the effects of key design parameters on the desired bending response is essential to design improved soft fingers. An experiment was designed to analyse the effects of two dimensionless design parameters defining the geometry of the internal pneumatic channels, on measurable parameters that describe the bending response of soft fingers as well as the generated contact forces. Soft finger samples were designed and produced based on combinations of different levels of the studied parameters, with the same outer dimensions and material. The experiment setup utilises a pneumatic control board for controlling the actuation and a vision system for measuring the bending response, which can be modified to analyse other designs of soft actuators. The results of the experiment identified the best performing soft finger design, explaining the effect of the studied factors in enhancing its desired response. The outcome of this work serves as a step towards a more structured design guideline that can be followed to create soft fingers with an enhanced and more predictable grasping behaviour.

Original languageEnglish
Title of host publication40th Mechanisms and Robotics Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850169
DOIs
Publication statusPublished - 2016
EventASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016 - Charlotte, United States
Duration: 21 Aug 201624 Aug 2016

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume5B-2016

Conference

ConferenceASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016
Country/TerritoryUnited States
CityCharlotte
Period21/08/1624/08/16

Bibliographical note

Publisher Copyright:
© 2016 by ASME.

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modelling and Simulation

Fingerprint

Dive into the research topics of 'Experimental analysis of the bending response of soft gripper fingers'. Together they form a unique fingerprint.

Cite this