Enhancing deteriorated heat transfer of supercritical nitrogen in a vertical tube with wire matrix insert

Yi Wang, Tiejun Lu, Peter Drögemüller, Qinghua Yu, Yulong Ding, Yongliang Li*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


In this study, hiTRANTM wire matrix tube insert was used to improve the heat transfer deterioration of supercritical nitrogen (N2) in a heated tube caused by the effects of thermo-physical property variations and buoyancy force. Heat transfer experiments were carried out with N2 flowing upwardly in a vertical circular tube with and without the wire matrix insert under a sequence of experimental conditions including pressures of 35 and 40 bar, mass flow rate of 27.6 and 41.3 g/min and constant heat flux conditions at 6.8, 8.0 and 9.3 kW/m2, respectively. Experimental results show that N2 exhibits similar heat transfer behavior when transiting across the pseudo-critical point as other fluids such as water and CO2. Due to the addition of the wire matrix insert, that intensified the overall fluid mixing in the test tube, the heat transfer performance of N2 was enhanced by more than 42% and up to 2.35 times while the pressure drop increase was negligible compared to the system inlet pressure. Moreover, it has been demonstrated that there might exist an optimum combination of experimental conditions leading to the maximum performance of the wire matrix insert. Furthermore, as the results show, with the Dittus-Boelter correlation and correlations for water and CO2 falling short of fitting the heat transfer data of N2, a heat transfer correlation, exclusively for N2 going through the pseudo-critical point is needed. The findings in this study also reveal that both supercritical N2 internal flow heat transfer and the use of wire matrix insert to enhance the deteriorated heat transfer of supercritical fluids are promising topics and require more significant attentions in future studies.

Original languageEnglish
Article number120358
JournalInternational Journal of Heat and Mass Transfer
Publication statusPublished - Dec 2020


  • Convective heat transfer
  • HiTRAN wire matrix insert
  • Improved heat transfer deterioration
  • Pseudo-critical point
  • Supercritical nitrogen
  • Vertical circular tube

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Enhancing deteriorated heat transfer of supercritical nitrogen in a vertical tube with wire matrix insert'. Together they form a unique fingerprint.

Cite this