TY - JOUR
T1 - Engineering Bimetallic Ag-Cu Nanoalloys for Highly Efficient Oxygen Reduction Catalysts:
T2 - A Guideline for Designing Ag-Based Electrocatalysts with Activity Comparable to Pt/C-20
AU - Wu, Xiaoqiang
AU - Chen, Fuyi
AU - Zhang, Nan
AU - Qaseem, Adnan
AU - Johnston, Roy L
N1 - © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2017/3/15
Y1 - 2017/3/15
N2 - Development of highly active and stable Pt-free oxygen reduction reaction catalysts from earth-abundant elements remains a grand challenge for highly demanded metal-air batteries. Ag-based alloys have many advantages over platinum group catalysts due to their low cost, high stability, and acceptable oxygen reduction reaction (ORR) performance in alkaline solutions. Nevertheless, compared to commercial Pt/C-20%, their catalytic activity still cannot meet the demand of commercialization. In this study, a kind of catalysts screening strategy on Agx Cu100-x nanoalloys is reported, containing the surface modification method, studies of activity enhancement mechanism, and applied research on zinc-air batteries. The results exhibit that the role of selective dealloying (DE) or galvanic displacement (GD) is limited by the "parting limitation", and this "parting limitation" determines the surface topography, position of d-band center, and ORR performance of Agx Cu100-x alloys. The GD-Ag55 Cu45 and DE-Ag25 Cu75 catalysts alloys present excellent ORR performance that is comparable to Pt/C-20%. The relationship between electronic perturbation and specific activity demonstrates that positive shift of the d-band center (≈0.12 eV, relative to Ag) for GD-Ag55 Cu45 is beneficial for ORR, which is contrary to Pt-based alloys (negative shift, ≈0.1 eV). Meanwhile, extensive electrochemical and electronic structure characterization indicates that the high work function of GD-Ag55 Cu45 (4.8 eV) is the reason behind their excellent durability for zinc-air batteries.
AB - Development of highly active and stable Pt-free oxygen reduction reaction catalysts from earth-abundant elements remains a grand challenge for highly demanded metal-air batteries. Ag-based alloys have many advantages over platinum group catalysts due to their low cost, high stability, and acceptable oxygen reduction reaction (ORR) performance in alkaline solutions. Nevertheless, compared to commercial Pt/C-20%, their catalytic activity still cannot meet the demand of commercialization. In this study, a kind of catalysts screening strategy on Agx Cu100-x nanoalloys is reported, containing the surface modification method, studies of activity enhancement mechanism, and applied research on zinc-air batteries. The results exhibit that the role of selective dealloying (DE) or galvanic displacement (GD) is limited by the "parting limitation", and this "parting limitation" determines the surface topography, position of d-band center, and ORR performance of Agx Cu100-x alloys. The GD-Ag55 Cu45 and DE-Ag25 Cu75 catalysts alloys present excellent ORR performance that is comparable to Pt/C-20%. The relationship between electronic perturbation and specific activity demonstrates that positive shift of the d-band center (≈0.12 eV, relative to Ag) for GD-Ag55 Cu45 is beneficial for ORR, which is contrary to Pt-based alloys (negative shift, ≈0.1 eV). Meanwhile, extensive electrochemical and electronic structure characterization indicates that the high work function of GD-Ag55 Cu45 (4.8 eV) is the reason behind their excellent durability for zinc-air batteries.
KW - Journal Article
KW - Ag-based alloys
KW - d-band center
KW - electronic perturbation
KW - oxygen reduction
KW - parting limitation
U2 - 10.1002/smll.201603876
DO - 10.1002/smll.201603876
M3 - Article
C2 - 28296197
SN - 1613-6810
JO - Small
JF - Small
ER -