Abstract
Biocompatible polymers are widely used in tissue engineering and biomedical device applications. However, few biomaterials are suitable for use as long-term implants and these examples usually possess limited property scope, can be difficult to process, and are non-responsive to external stimuli. Here, we report a class of easily processable polyamides with stereocontrolled mechanical properties and high-fidelity shape memory behaviour. We synthesise these materials using the efficient nucleophilic thiol-yne reaction between a dipropiolamide and dithiol to yield an α,β - unsaturated carbonyl moiety along the polymer backbone. By rationally exploiting reaction conditions, the alkene stereochemistry is modulated between 35-82% cis content and the stereochemistry dictates the bulk material properties such as tensile strength, modulus, and glass transition. Further access to materials possessing a broader range of thermal and mechanical properties is accomplished by polymerising a variety of commercially available dithiols with the dipropiolamide monomer.
Original language | English |
---|---|
Article number | 3250 |
Number of pages | 11 |
Journal | Nature Communications |
Volume | 11 |
Issue number | 1 |
Early online date | 26 Jun 2020 |
DOIs | |
Publication status | Published - Dec 2020 |
ASJC Scopus subject areas
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General Physics and Astronomy