Efflux Impacts Intracellular Accumulation Only in Actively Growing Bacterial Cells

Emily Whittle, Helen McNeil, Eleftheria Trampari, Mark Webber, Tim Overton, Jessica Blair

Research output: Contribution to journalArticlepeer-review

26 Downloads (Pure)

Abstract

For antibiotics with intracellular targets, effective treatment of bacterial infections requires the drug to accumulate to a high concentration inside cells. Bacteria produce a complex cell envelope and possess drug export efflux pumps to limit drug accumulation inside cells. Decreasing cell envelope permeability and increasing efflux pump activity can reduce intracellular accumulation of antibiotics and are commonly seen in antibiotic-resistant strains. Here, we show that the balance between influx and efflux differs depending on bacterial growth phase in Gram-negative bacteria. Accumulation of the fluorescent compound ethidium bromide (EtBr) was measured in Salmonella enterica serovar Typhimurium SL1344 (wild type) and efflux deficient (DacrB) strains during growth. In SL1344, EtBr accumulation remained low, regardless of growth phase, and did not correlate with acrAB transcription. EtBr accumulation in the DacrB strains was high in exponential phase but dropped sharply later in growth, with no significant difference from that in SL1344 in stationary phase. Low EtBr accumulation in stationary phase was not due to the upregulation of other efflux pumps but instead was due to decreased permeability of the envelope in stationary phase. Transcriptome sequencing (RNA-seq) identified changes in expression of several pathways that remodel the envelope in stationary phase, leading to lower permeability. IMPORTANCE This study shows that efflux is important for maintaining low intracellular accumulation only in actively growing cells and that envelope permeability is the predominant factor in stationary-phase cells. This conclusion means that (i) antibiotics with intracellular targets may be less effective in complex infections with nongrowing or slow-growing bacteria, where intracellular accumulation may be low; (ii) efflux inhibitors may be successful in potentiating the activity of existing antibiotics, but potentially only for bacterial infections where cells are actively growing; and (iii) the remodeling of the cell envelope prior to stationary phase could provide novel drug targets.

Original languageEnglish
Article numbere02608-21
JournalmBio
Volume12
Issue number5
DOIs
Publication statusPublished - 12 Oct 2021

Bibliographical note

Funding Information:
E.E.W. was funded by AAMR Wellcome Trust DTP grant 108876/B/15/Z at the University of Birmingham. J.M.A.B. and H.M. were funded by BBSRC grant BB/M02623X/ 1 (David Phillips Fellowship to J.M.A.B.).

Publisher Copyright:
Copyright © 2021 Whittle et al.

Keywords

  • Antibiotic resistance
  • Efflux pumps
  • Membrane permeability

ASJC Scopus subject areas

  • Microbiology
  • Virology

Fingerprint

Dive into the research topics of 'Efflux Impacts Intracellular Accumulation Only in Actively Growing Bacterial Cells'. Together they form a unique fingerprint.

Cite this