Effect of nanoclay dispersion on the properties of a commercial glass ionomer cement

Muhammad Fareed, Artemis Stamboulis

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
40 Downloads (Pure)

Abstract

Objective. The reinforcement effect of polymer-grade montmorillonite (PGV and PGN nanoclay) on Fuji-IX glass ionomer cement was investigated. Materials and Method. PGV and PGV nanoclays (2.0 wt%) were dispersed in the liquid portion of Fuji-IX. Fourier-transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC) were used to quantify acid-base reaction and the liquid portion of GIC. The mechanical properties (CS, DTS, FS, and ) of cements (n = 20) were measured at 1 hour, 1 day, and 1 month. The microstructure was examined by cryo-SEM and TEM. Results. FTIR shows that the setting reaction involves the neutralisation of PAA by the glass powder which was linked with the formation of calcium and aluminium salt-complexes. The experimental GICs (C-V and C-N) exhibited mechanical properties in compliance to ISO standard requirement have higher values than Fuji-IX cement. There was no significant correlation of mechanical properties was found between C-V and C-N. The average Mw of Fuji-IX was 15,700 and the refractive index chromatogram peak area was 33,800. TEM observation confirmed that nanoclays were mostly exfoliated and dispersed in the matrix of GIC. Conclusion. The reinforcement of nanoclays in GICs may potentially produce cements with better mechanical properties without compromising the nature of polyacid neutralisation.
Original languageEnglish
Article number685389
Pages (from-to)1-10
Number of pages10
JournalInternational Journal of Biomaterials
Volume2014
DOIs
Publication statusPublished - 26 Aug 2014

Fingerprint

Dive into the research topics of 'Effect of nanoclay dispersion on the properties of a commercial glass ionomer cement'. Together they form a unique fingerprint.

Cite this