TY - JOUR
T1 - Effect of insulin and contraction on glycogen synthase phosphorylation and kinetic properties in epitrochlearis muscles from lean and obese Zucker rats
AU - Lin, Fang Chin
AU - Lai, Yu Chiang
AU - Bolling, Astrid
AU - Stuenaes, Jorid T.
AU - Cumming, Kristoffer T.
AU - Ingvaldsen, Ada
AU - Ivy, John L.
AU - Jensen, Jorgen
PY - 2012/5/15
Y1 - 2012/5/15
N2 - In the present study, the effects of insulin and contraction on glycogen synthase (GS) kinetic properties and phosphorylation were investigated in epitrochlearis muscles from lean and obese Zucker rats. Total GS activity and protein expression were ~15% lower in epitrochlearis from obese rats compared with lean rats. Insulin-stimulated GS fractional activity and affinity for UDP-glucose were lower (higher Km) in muscles from obese rats. GS Ser641 and Ser645,649,653,657 phosphorylation was higher in insulin-stimulated muscles from obese rats, which agreed with lower GS activation. Contraction-mediated GS dephosphorylation of Ser641, Ser641+645, Ser645,649,653,657, and Ser7+10 was normal in muscles from obese Zucker rats, and GS fractional activity increased to similar levels in epitrochlearis muscles from lean and obese rats. GS affinity for UDP glucose was ~0.8, ~0.4, and ~0.1 mM with assay buffers containing 0, 0.17, and 12 mM glucose 6-phosphate, respectively. Contraction increased affinity for UDP-glucose (reduced Km) at a physiological concentration of glucose 6-phosphate (0.17 mM) to ~0.2 mM in muscles from both lean and obese rats. Interestingly, in the absence of glucose 6-phosphate in the assay buffer, contraction (and insulin) did not influence GS affinity for UDP-glucose, indicating that affinity is regulated by sensitivity for glucose 6-phosphate. In conclusion, contraction-mediated activation and dephosphorylation of GS were normal in muscles from obese Zucker rats, whereas insulin-mediated GS activation and dephosphorylation were impaired.
AB - In the present study, the effects of insulin and contraction on glycogen synthase (GS) kinetic properties and phosphorylation were investigated in epitrochlearis muscles from lean and obese Zucker rats. Total GS activity and protein expression were ~15% lower in epitrochlearis from obese rats compared with lean rats. Insulin-stimulated GS fractional activity and affinity for UDP-glucose were lower (higher Km) in muscles from obese rats. GS Ser641 and Ser645,649,653,657 phosphorylation was higher in insulin-stimulated muscles from obese rats, which agreed with lower GS activation. Contraction-mediated GS dephosphorylation of Ser641, Ser641+645, Ser645,649,653,657, and Ser7+10 was normal in muscles from obese Zucker rats, and GS fractional activity increased to similar levels in epitrochlearis muscles from lean and obese rats. GS affinity for UDP glucose was ~0.8, ~0.4, and ~0.1 mM with assay buffers containing 0, 0.17, and 12 mM glucose 6-phosphate, respectively. Contraction increased affinity for UDP-glucose (reduced Km) at a physiological concentration of glucose 6-phosphate (0.17 mM) to ~0.2 mM in muscles from both lean and obese rats. Interestingly, in the absence of glucose 6-phosphate in the assay buffer, contraction (and insulin) did not influence GS affinity for UDP-glucose, indicating that affinity is regulated by sensitivity for glucose 6-phosphate. In conclusion, contraction-mediated activation and dephosphorylation of GS were normal in muscles from obese Zucker rats, whereas insulin-mediated GS activation and dephosphorylation were impaired.
KW - AMPK
KW - Diabetes
KW - Enzyme kinetic
KW - GSK-3
KW - Insulin resistance
UR - http://www.scopus.com/inward/record.url?scp=84861174812&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.00430.2011
DO - 10.1152/ajpcell.00430.2011
M3 - Article
C2 - 22403789
AN - SCOPUS:84861174812
SN - 0363-6143
VL - 302
SP - C1539-C1547
JO - American Journal of Physiology - Cell Physiology
JF - American Journal of Physiology - Cell Physiology
IS - 10
ER -