Abstract
Objective: Classification of sleep-wake states using multichannel electroencephalography (EEG) data that reliably work for neonates.
Methods: A deep multilayer perceptron (MLP) neural network is developed to classify sleep-wake states using multichannel bipolar EEG signals, which takes an input vector of size 108 containing the joint features of 9 channels. The network avoids any post-processing step in order to work as a full-fledged real-time application. For training and testing the model, EEG recordings of 3525 30-second segments from 19 neonates (postmenstrual age of 37 ± 05 weeks) are used.
Results: For sleep-wake classification, mean Cohen’s kappa between the network estimate and the ground truth annotation by human experts is 0.62. The maximum mean accuracy can reach up to 83% which, to date, is the highest accuracy for sleep-wake classification.
Methods: A deep multilayer perceptron (MLP) neural network is developed to classify sleep-wake states using multichannel bipolar EEG signals, which takes an input vector of size 108 containing the joint features of 9 channels. The network avoids any post-processing step in order to work as a full-fledged real-time application. For training and testing the model, EEG recordings of 3525 30-second segments from 19 neonates (postmenstrual age of 37 ± 05 weeks) are used.
Results: For sleep-wake classification, mean Cohen’s kappa between the network estimate and the ground truth annotation by human experts is 0.62. The maximum mean accuracy can reach up to 83% which, to date, is the highest accuracy for sleep-wake classification.
Original language | English |
---|---|
Pages (from-to) | 183025-183034 |
Journal | IEEE Access |
Volume | 8 |
DOIs | |
Publication status | Published - 1 Oct 2020 |