Abstract
Purpose: Respiratory tract infections (RTIs) are responsible for over 2.8 million deaths per year worldwide with pathobiont carriage a required precursor to infection. We sought to determine carriage epidemiology for both bacterial and viral respiratory pathogens as part of a large population-based cross-sectional carriage study.
Methodology: Nose self-swab samples were collected in two separate time-points, May to August 2012 (late spring/summer) and February to April 2013 (winter/early spring). The presence of six bacterial species: S. pneumoniae, H. influenzae, M. catarrhalis, S. aureus, P. aeruginosa and N. meningitidis in addition to respiratory syncytial virus, influenza viruses A and B, rhinovirus/enterovirus, coronavirus, parainfluenza viruses 1-3 and adenovirus was determined using culture and PCR methods.Results/Key findings. Carriage was shown to vary with age, recent RTI and the presence of other species. Spatial structures of microbial communities were more disordered in the 0-4 age group and those with recent RTI. Species frequency distributions were flatter than random expectation in young individuals (X2=20.42, P=0.002), indicating spatial clumping of species consistent with facilitative relationships. Deviations from a neutral model of ecological niches were observed in summer samples and from older individuals but not in the winter or younger individuals (0-4 years), suggesting the presence of seasonal and age-dependent niche processes in respiratory community assembly.
Conclusion: The application of epidemiological methods and ecological theory to respiratory tract samples has yielded novel insights into the factors that drive microbial community composition.
Keywords: carriage; ecology; epidemiology; microbial communities; respiratory infection.
Methodology: Nose self-swab samples were collected in two separate time-points, May to August 2012 (late spring/summer) and February to April 2013 (winter/early spring). The presence of six bacterial species: S. pneumoniae, H. influenzae, M. catarrhalis, S. aureus, P. aeruginosa and N. meningitidis in addition to respiratory syncytial virus, influenza viruses A and B, rhinovirus/enterovirus, coronavirus, parainfluenza viruses 1-3 and adenovirus was determined using culture and PCR methods.Results/Key findings. Carriage was shown to vary with age, recent RTI and the presence of other species. Spatial structures of microbial communities were more disordered in the 0-4 age group and those with recent RTI. Species frequency distributions were flatter than random expectation in young individuals (X2=20.42, P=0.002), indicating spatial clumping of species consistent with facilitative relationships. Deviations from a neutral model of ecological niches were observed in summer samples and from older individuals but not in the winter or younger individuals (0-4 years), suggesting the presence of seasonal and age-dependent niche processes in respiratory community assembly.
Conclusion: The application of epidemiological methods and ecological theory to respiratory tract samples has yielded novel insights into the factors that drive microbial community composition.
Keywords: carriage; ecology; epidemiology; microbial communities; respiratory infection.
Original language | English |
---|---|
Pages (from-to) | 1096-1108 |
Number of pages | 13 |
Journal | Journal of Medical Microbiology |
Volume | 67 |
DOIs | |
Publication status | Published - 1 Aug 2018 |