Dual-emitting Langmuir-Blodgett film-based organic light-emitting diodes

Henk J. Bolink, Etienne Baranoff, Miguel Clemente-León, Eugenio Coronado, Nora Lardiés, Angel López-Muñoz, Diego Repetto, Md K. Nazeeruddin, Etienne Baranoff

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Langmuir-Blodgett (LB) films containing alternating layers of the metallosurfactants bis(4,4′-tridecyl-2,2′-bipyridine)-(4,4′- dicarboxy-2,2′-bipyridine) ruthenium(II)-bis(chloride) (1) and bis[2-(2,4-difluorophenyl)pyridine](4,4′-dinonadecyl-2, 2′-bipyridine)iridium(III) chloride (2) have been prepared. Langmuir monolayers at the air-water interface of 1 and 2 with different anions in the subphase have been characterized by π-A compression isotherms and Brewster angle microscopy (BAM). The transferred LB films have been characterized by IR, UV-vis and emission spectroscopy, and atomic force microscopy (AFM). Electroluminescent devices formed by LB films containing alternating layers of these two molecules show dual emission by simple mixing of the two emitters in a single LB film, and by preparing two stacked configurations, in which a LB layer of the ruthenium complexes is deposited on top of a LB layer of the iridium complexes and the inverse situation. The color of the electroluminescence can be tuned by changing the thickness of each LB layer. Due to efficient hole blocking of a layer of the iridium complexes when deposited on top of the layer of ruthenium complexes, in that configuration the green emission of the iridium complexes is suppressed. In the opposite case, excitons are generated in both layers although most likely preferentially in the layer of the iridium complexes.

Original languageEnglish
Pages (from-to)11461-11468
Number of pages8
JournalLangmuir
Volume26
Issue number13
DOIs
Publication statusPublished - 6 Jul 2010

ASJC Scopus subject areas

  • Electrochemistry
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • General Materials Science
  • Spectroscopy

Fingerprint

Dive into the research topics of 'Dual-emitting Langmuir-Blodgett film-based organic light-emitting diodes'. Together they form a unique fingerprint.

Cite this