TY - JOUR
T1 - Distribution of plasma oxidised phosphatidylcholines in chronic kidney disease and periodontitis as a co-morbidity
AU - Ademowo, Opeyemi Stella
AU - Sharma, Praveen
AU - Cockwell, Paul
AU - Reis, Ana
AU - Chapple, Iain
AU - Griffiths, Helen R.
AU - Dias, Irundika H. K.
PY - 2020/1
Y1 - 2020/1
N2 - Individuals with chronic kidney disease (CKD) and periodontitis as a co-morbidity have a higher mortality rate than individuals with CKD and no periodontitis. The inflammatory burden associated with both diseases contributes to an increased risk of cardiovascular and all-cause mortality. We previously demonstrated that periodontitis is associated with increasing circulating markers of inflammation and oxidative stress. We propose that inflammatory oxidised phosphocholines may contribute to the increased risk of cardiovascular disease in patients with CKD. However, the analysis of oxidised phospholipids has been limited by a lack of authentic standards for absolute quantification. Here, we have developed a comprehensive quantification liquid chromatography-mass spectrometry-based multiple reaction monitoring method for oxidised phospholipids (including some without available authentic species) that enables us to simultaneously measure twelve oxidised phosphatidylcholine species with high levels of sensitivity and specificity. The standard curves for commercial standards 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphatidylcholine (PGPC); 1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphatidylcholine (PONPC), 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphatidylcholine (PAzPC) and 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphatidylcholine (POVPC), were linear with a correlation coefficient greater than 0.99 for all analytes. The method is reproducible, with intra- and inter-day precision <15%, and accuracy within ±5% of nominal values for all analytes. This method has been successfully applied to investigate oxidised phosphatidylcholine in plasma from CKD patients with and without chronic periodontitis and the data that was obtained has been compared to plasma from healthy controls. Comparative analysis demonstrates altered chain fragmented phosphatidylcholine profiles in the plasma samples of patients with CKD and periodontitis as a co-morbidity compared to healthy controls.
AB - Individuals with chronic kidney disease (CKD) and periodontitis as a co-morbidity have a higher mortality rate than individuals with CKD and no periodontitis. The inflammatory burden associated with both diseases contributes to an increased risk of cardiovascular and all-cause mortality. We previously demonstrated that periodontitis is associated with increasing circulating markers of inflammation and oxidative stress. We propose that inflammatory oxidised phosphocholines may contribute to the increased risk of cardiovascular disease in patients with CKD. However, the analysis of oxidised phospholipids has been limited by a lack of authentic standards for absolute quantification. Here, we have developed a comprehensive quantification liquid chromatography-mass spectrometry-based multiple reaction monitoring method for oxidised phospholipids (including some without available authentic species) that enables us to simultaneously measure twelve oxidised phosphatidylcholine species with high levels of sensitivity and specificity. The standard curves for commercial standards 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphatidylcholine (PGPC); 1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphatidylcholine (PONPC), 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphatidylcholine (PAzPC) and 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphatidylcholine (POVPC), were linear with a correlation coefficient greater than 0.99 for all analytes. The method is reproducible, with intra- and inter-day precision <15%, and accuracy within ±5% of nominal values for all analytes. This method has been successfully applied to investigate oxidised phosphatidylcholine in plasma from CKD patients with and without chronic periodontitis and the data that was obtained has been compared to plasma from healthy controls. Comparative analysis demonstrates altered chain fragmented phosphatidylcholine profiles in the plasma samples of patients with CKD and periodontitis as a co-morbidity compared to healthy controls.
KW - CKD
KW - Periodontitis
KW - Oxidised phospholipids
KW - MRM-LC/MS
KW - Oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=85076566496&partnerID=8YFLogxK
U2 - 10.1016/j.freeradbiomed.2019.10.012
DO - 10.1016/j.freeradbiomed.2019.10.012
M3 - Article
SN - 0891-5849
VL - 146
SP - 130
EP - 138
JO - Free Radical Biology and Medicine
JF - Free Radical Biology and Medicine
ER -