TY - JOUR
T1 - Differential effects of intravenous anesthetics on capacitative calcium entry in human pulmonary artery smooth muscle cells
AU - Yang, Mikyung
AU - Ding, Xueqin
AU - Murray, Paul A
PY - 2008
Y1 - 2008
N2 - We assessed the roles of the protein kinase C (PKC) and the tyrosine kinase (TK) signaling pathways in regulating capacitative calcium entry (CCE) in human pulmonary artery smooth muscle cells (PASMCs) and investigated the effects of intravenous anesthetics (midazolam, propofol, thiopental, ketamine, etomidate, morphine, and fentanyl) on CCE in human PASMCs. Fura-2-loaded human PASMCs were placed in a dish (37 degrees C) on an inverted fluorescence microscope. Intracellular Ca2+ concentration ([Ca2+]i) was measured as the 340/380 fluorescence ratio in individual PASMCs. Thapsigargin, a sarcoplasmic reticulum Ca2+-adenosine triphosphatase inhibitor, was used to deplete intracellular Ca2+ stores after removing extracellular Ca2+. CCE was then activated by restoring extracellular Ca2+ (2.2 mM). The effects of PKC activation and inhibition, TK inhibition, and the intravenous anesthetics on CCE were assessed. Thapsigargin caused a transient increase in [Ca2+]i. Restoring extracellular Ca2+ caused a rapid peak increase in [Ca2+]i, followed by a sustained increase in [Ca2+]i; i.e., CCE was stimulated in human PASMCs. PKC activation attenuated (P <0.05), whereas PKC inhibition potentiated (P <0.05), both peak and sustained CCE. TK inhibition attenuated (P <0.05) both peak and sustained CCE. Midazolam, propofol, and thiopental each attenuated (P <0.05) both peak and sustained CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE. Our results suggest that CCE in human PASMCs is influenced by both the TK and PKC signaling pathways. Midazolam, propofol, and thiopental each attenuated CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE.
AB - We assessed the roles of the protein kinase C (PKC) and the tyrosine kinase (TK) signaling pathways in regulating capacitative calcium entry (CCE) in human pulmonary artery smooth muscle cells (PASMCs) and investigated the effects of intravenous anesthetics (midazolam, propofol, thiopental, ketamine, etomidate, morphine, and fentanyl) on CCE in human PASMCs. Fura-2-loaded human PASMCs were placed in a dish (37 degrees C) on an inverted fluorescence microscope. Intracellular Ca2+ concentration ([Ca2+]i) was measured as the 340/380 fluorescence ratio in individual PASMCs. Thapsigargin, a sarcoplasmic reticulum Ca2+-adenosine triphosphatase inhibitor, was used to deplete intracellular Ca2+ stores after removing extracellular Ca2+. CCE was then activated by restoring extracellular Ca2+ (2.2 mM). The effects of PKC activation and inhibition, TK inhibition, and the intravenous anesthetics on CCE were assessed. Thapsigargin caused a transient increase in [Ca2+]i. Restoring extracellular Ca2+ caused a rapid peak increase in [Ca2+]i, followed by a sustained increase in [Ca2+]i; i.e., CCE was stimulated in human PASMCs. PKC activation attenuated (P <0.05), whereas PKC inhibition potentiated (P <0.05), both peak and sustained CCE. TK inhibition attenuated (P <0.05) both peak and sustained CCE. Midazolam, propofol, and thiopental each attenuated (P <0.05) both peak and sustained CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE. Our results suggest that CCE in human PASMCs is influenced by both the TK and PKC signaling pathways. Midazolam, propofol, and thiopental each attenuated CCE, whereas ketamine, etomidate, morphine, and fentanyl had no effect on CCE.
U2 - 10.1152/ajplung.00171.2007
DO - 10.1152/ajplung.00171.2007
M3 - Article
C2 - 18344413
SN - 1040-0605
VL - 294
SP - L1007-12
JO - American journal of physiology. Lung cellular and molecular physiology
JF - American journal of physiology. Lung cellular and molecular physiology
IS - 5
ER -