Different physiological responses of C3 and C4 plants to nanomaterials

Tonghao Bai, Peng Zhang, Zhiling Guo, Andrew J. Chetwynd, Mei Zhang, Muhammad Adeel, Mingshu Li, Kerui Guo, Ruize Gao, Jianwei Li, Yi Hao, Yukui Rui

Research output: Contribution to journalArticlepeer-review

Abstract

Several studies have previously reported that nanomaterial uptake and toxicity in plants are species dependent. However, the differences between photosynthetic pathways, C3 and C4, following nanomaterial exposure are poorly understood. In the current work, wheat and rice, two C3 pathway species are compared to amaranth and maize, which utilize the C4 photosynthetic mechanism. These plants were cultured in soils which were spiked with CuO, Ag, TiO2, MWCNT, and FLG nanomaterials. Overall, the C4 plant exhibited higher resilience to NM stress than C3 plants. In particular, significant differences were observed in chlorophyll contents with rice returning a 40.9–54.2% decrease compared to 3.5–15.1% for maize. Fv/Fm levels were significantly reduced by up to 51% in rice whereas no significant reductions were observed in amaranth and maize. Furthermore, NM uptake in the C3 species was greater than that in C4 plants, a trend that was also seen in metal concentration. TEM results showed that CuO NPs altered the chloroplast thylakoid structure in rice leaves and a large number of CuO NPs were observed in the vascular sheath cells. In contrast, there were no significant changes in the chloroplasts in the vascular sheath and no significant CuO NPs were found in maize leaves. This study was the first to systematically characterize the effect of metal and carbon-based nanomaterials in soil on C3 and C4 plants, providing a new perspective for understanding the impact of nanomaterials on plants.
Original languageEnglish
Pages (from-to)25542–25551
Number of pages10
JournalEnvironmental Science and Pollution Research
Volume28
Issue number20
Early online date18 Jan 2021
DOIs
Publication statusPublished - May 2021

Keywords

  • C3 plant
  • C4 plant
  • Response
  • Nanomaterials
  • Photosynthetic
  • Chloroplast

Fingerprint

Dive into the research topics of 'Different physiological responses of C3 and C4 plants to nanomaterials'. Together they form a unique fingerprint.

Cite this