Research output per year
Research output per year
Samuel Leighton, Rachel Upthegrove, Rajeev Krishnadas, Michael Benros, Matthew Broome, Georgios Gkoutos, Peter Liddle, Swaran Singh, Linda Everard, Peter Jones, David Fowler, Vimal Sharma, Nicholas Freemantle, Rune Christensen, Nikolai Albert, Merete Nordentoft, Matthias Schwannnauer, Jonathan Cavanagh, Andrew Gumley, Max Birchwood
Research output: Contribution to journal › Article › peer-review
BACKGROUND: Outcomes for people with first-episode psychosis are highly heterogeneous. Few reliable validated methods are available to predict the outcome for individual patients in the first clinical contact. In this study, we aimed to build multivariable prediction models of 1-year remission and recovery outcomes using baseline clinical variables in people with first-episode psychosis.
METHODS: In this machine learning approach, we applied supervised machine learning, using regularised regression and nested leave-one-site-out cross-validation, to baseline clinical data from the English Evaluating the Development and Impact of Early Intervention Services (EDEN) study (n=1027), to develop and internally validate prediction models at 1-year follow-up. We assessed four binary outcomes that were recorded at 1 year: symptom remission, social recovery, vocational recovery, and quality of life (QoL). We externally validated the prediction models by selecting from the top predictor variables identified in the internal validation models the variables shared with the external validation datasets comprised of two Scottish longitudinal cohort studies (n=162) and the OPUS trial, a randomised controlled trial of specialised assertive intervention versus standard treatment (n=578).
FINDINGS: The performance of prediction models was robust for the four 1-year outcomes of symptom remission (area under the receiver operating characteristic curve [AUC] 0·703, 95% CI 0·664-0·742), social recovery (0·731, 0·697-0·765), vocational recovery (0·736, 0·702-0·771), and QoL (0·704, 0·667-0·742; p<0·0001 for all outcomes), on internal validation. We externally validated the outcomes of symptom remission (AUC 0·680, 95% CI 0·587-0·773), vocational recovery (0·867, 0·805-0·930), and QoL (0·679, 0·522-0·836) in the Scottish datasets, and symptom remission (0·616, 0·553-0·679), social recovery (0·573, 0·504-0·643), vocational recovery (0·660, 0·610-0·710), and QoL (0·556, 0·481-0·631) in the OPUS dataset.
INTERPRETATION: In our machine learning analysis, we showed that prediction models can reliably and prospectively identify poor remission and recovery outcomes at 1 year for patients with first-episode psychosis using baseline clinical variables at first clinical contact.
FUNDING: Lundbeck Foundation.
Original language | English |
---|---|
Pages (from-to) | e261-e270 |
Number of pages | 10 |
Journal | The Lancet Digital Health |
Volume | 1 |
Issue number | 6 |
Early online date | 12 Sept 2019 |
DOIs | |
Publication status | Published - Oct 2019 |
Research output: Contribution to journal › Review article › peer-review