Detection of human auditory evoked brain signals with a resilient nonlinear optically pumped magnetometer

Research output: Contribution to journalArticlepeer-review

212 Downloads (Pure)


Optically Pumped Magnetometers (OPMs) have been hailed as the future of human magnetoencephalography, as they enable a level of flexibility and adaptability that cannot be obtained with systems based on superconductors. While OPM sensors are already commercially available, there is plenty of room for further improvements and customization. In this work, we detected auditory evoked brain fields using an OPM based on the nonlinear magneto-optical rotation (NMOR) technique. Our sensor head, containing only optical and non-magnetizable elements, is connected to an external module including all the electronic components, placed outside the magnetically shielded room. The use of the NMOR allowed us to detect the brain signals in non-zero magnetic field environments. In particular, we were able to detect auditory evoked fields in a background field of 70 nT. We benchmarked our sensor with conventional SQUID sensors, showing comparable performance. We further demonstrated that our sensor can be employed to detect modulations of brain oscillations in the alpha band. Our results are a promising stepping-stone towards the realization of resilient OPM-based magnetoencephalography systems that do not require active compensation.
Original languageEnglish
Article number117497
Early online date24 Oct 2020
Publication statusPublished - 1 Feb 2021

Bibliographical note

Funding Information:
This work was supported by the BBSRC research grant Bconn (grant number BB/R018723/1 ) as well as a Wellcome Trust Investigator Award in Science (grant number 207550 ) and the Royal Society Wolfson Research Merit Award. We are very grateful to Vera Guarrera and Szymon Pustelny for helpful discussions. We thank Xiang Peng for providing the paraffin coated cell. We acknowledge the help of Jonathan Winter, Michał Kuchta, Yali Pan and Xi Wang. We thank Jon Goldwin for reading the manuscript.


  • Auditory evoked response
  • Magnetoencephalography
  • Nonlinear magneto-optical rotation
  • Optically pumped magnetometer

ASJC Scopus subject areas

  • Neurology
  • Cognitive Neuroscience


Dive into the research topics of 'Detection of human auditory evoked brain signals with a resilient nonlinear optically pumped magnetometer'. Together they form a unique fingerprint.

Cite this