Detecting chaos with neural networks

D. M. Wolpert, R. C. Miall

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Predictions of the future values of a time series can be used to try to distinguish chaotic from noisy signals. We show that neurally inspired networks provide a powerful tool for this task, in that they can reliably distinguish between predictable, chaotic and noisy records. We have used these neural networks to analyse the 'standard' time series of measles and chickenpox cases in New York City. Applied to these real time series these new methods perform as well as a recently developed technique. We also employed feedforward and recurrent networks to analyse several sets of artificially generated data and found that they exhibit advantages over other recent techniques. These networks were able to generalize the rules governing the generation of the time series from very few data points and could also forecast series generated by non-stationary dynamics.

Original languageEnglish
Pages (from-to)82-86
Number of pages5
JournalProceedings of the Royal Society B: Biological Sciences
Volume242
Issue number1304
DOIs
Publication statusPublished - 1 Jan 1990

ASJC Scopus subject areas

  • General Biochemistry,Genetics and Molecular Biology
  • General Immunology and Microbiology
  • General Environmental Science
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Detecting chaos with neural networks'. Together they form a unique fingerprint.

Cite this