TY - GEN
T1 - Design of reinforced concrete T-beams strengthened in shear with externally bonded FRP composites
AU - Dirar, S.
AU - Qapo, M.
AU - Theofanous, M.
PY - 2018
Y1 - 2018
N2 - Current design guidelines for concrete structures strengthened with externally bonded (EB) fibre-reinforced polymer (FRP) reinforcement do not differentiate between the shear design of rectangular and T-beams. Nonetheless, EB FRP shear-strengthened rectangular and T-beams can have significantly different behaviour. In rectangular beams, EB FRP reinforcement may be bonded to the full depth of the beam web and therefore can effectively join the tension and compression chords. On the other hand, the presence of the slab in T-beams limits the effective depth of the EB FRP reinforcement. This can result in current design guidelines overestimating the shear strength enhancement offered by the FRP reinforcement in the case of T-beams. This paper presents a design model for reinforced concrete (RC) T-beams strengthened in shear with EB FRP composites. In the proposed design model, the FRP contribution to shear resistance is based on the 45° truss analogy and the FRP strain at failure is derived from direct-pull test results from the published literature. The predictions of the proposed model, together with those of Concrete Society TR55 and ACI 440.2R-17, were evaluated using an experimental database comprising 48 RC T-beams. The proposed model had an average predicted-to-experimental shear strength enhancement ratio of 1.062 and a standard deviation of 0.470. The average predicted-to-experimental ratios of TR55 and ACI 440.2R-17 models were 1.139 and 1.277, respectively, with standard deviations of 0.498 and 0.642, respectively. Not only does the proposed model generate more consistent predictions, but it also has a greater conservative nature, providing fewer overestimated predictions compared to current international design guidance.
AB - Current design guidelines for concrete structures strengthened with externally bonded (EB) fibre-reinforced polymer (FRP) reinforcement do not differentiate between the shear design of rectangular and T-beams. Nonetheless, EB FRP shear-strengthened rectangular and T-beams can have significantly different behaviour. In rectangular beams, EB FRP reinforcement may be bonded to the full depth of the beam web and therefore can effectively join the tension and compression chords. On the other hand, the presence of the slab in T-beams limits the effective depth of the EB FRP reinforcement. This can result in current design guidelines overestimating the shear strength enhancement offered by the FRP reinforcement in the case of T-beams. This paper presents a design model for reinforced concrete (RC) T-beams strengthened in shear with EB FRP composites. In the proposed design model, the FRP contribution to shear resistance is based on the 45° truss analogy and the FRP strain at failure is derived from direct-pull test results from the published literature. The predictions of the proposed model, together with those of Concrete Society TR55 and ACI 440.2R-17, were evaluated using an experimental database comprising 48 RC T-beams. The proposed model had an average predicted-to-experimental shear strength enhancement ratio of 1.062 and a standard deviation of 0.470. The average predicted-to-experimental ratios of TR55 and ACI 440.2R-17 models were 1.139 and 1.277, respectively, with standard deviations of 0.498 and 0.642, respectively. Not only does the proposed model generate more consistent predictions, but it also has a greater conservative nature, providing fewer overestimated predictions compared to current international design guidance.
KW - Beams
KW - Bond and interfacial stresses
KW - Codes
KW - Concrete
KW - Standard
KW - Standards and design guidelines
KW - Strengthening and repair
UR - http://www.scopus.com/inward/record.url?scp=85077560336&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85077560336
T3 - 9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, CICE 2018
SP - 726
EP - 734
BT - 9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, CICE 2018
A2 - Ferrier, Emmanuel
A2 - Benzarti, Karim
A2 - Caron, Jean-Francois
PB - International Institute for FRP in Construction (IIFC)
T2 - 9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, CICE 2018
Y2 - 17 July 2018 through 19 July 2018
ER -