Abstract
Heat shock proteins (Hsps) are a ubiquitous component of the cellular response to stress in both prokaryotic and eukaryotic organisms, but their role and function during desiccation stress in terrestrial arthropods has received limited attention. Molecular responses to rehydration are arguably as important as those to desiccation in maintaining cellular integrity and enzyme activity, but the role of Hsps during stress recovery is poorly understood and has never been addressed with respect to rehydration in insects. This study identifies distinct differences in the Hsp response to desiccation and rehydration in the flesh fly Sarcophaga crassipalpis, as well as differences in the desiccation responses of diapausing and nondiapausing pupae. In nondiapausing pupae, the expression of two inducible Hsps (Hsp23 and Hsp70) is upregulated by desiccation, but the water loss threshold for Hsp expression changes at different rates of dehydration. Continued desiccation results in the prolonged expression of both Hsp23 and Hsp70, which may contribute to the delayed adult eclosion noted in samples desiccated for more than 3 days at
Original language | English |
---|---|
Pages (from-to) | 963-971 |
Number of pages | 9 |
Journal | Journal of Experimental Biology |
Volume | 207 |
DOIs | |
Publication status | Published - 22 Feb 2004 |