Delay of migrating leukocytes by the basement membrane deposited by endothelial cells in long-term culture.

VJ Burton, Lynn Butler, Helen McGettrick, Philip Stone, Hannah Jeffery, Caroline Savage, George Rainger, Gerard Nash

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

We investigated the migration of human leukocytes through endothelial cells (EC), and particularly their underlying basement membrane (BM). EC were cultured for 20days on 3μm-pore filters or collagen gels to form a distinct BM, and then treated with tumour necrosis factor-α, interleukin-1β or interferon-γ. Neutrophil migration through the cytokine-treated EC and BM was delayed for 20-day compared to 4-day cultures. The BM alone obstructed chemotaxis of neutrophils, and if fresh EC were briefly cultured on stripped BM, there was again a hold-up in migration. In studies with lymphocytes and monocytes, we could detect little hold-up of migration for 20-day versus 4-day cultures, in either the filter- or gel-based models. Direct microscopic observations showed that BM also held-up neutrophil migration under conditions of flow. Treatment of upper and/or lower compartments of filters with antibodies against integrins, showed that neutrophil migration through the endothelial monolayer was dependent on β(2)-integrins, but not β1- or β(3)-integrins. Migration from the subendothelial compartment was supported by β1- and β(2)-integrins for all cultures, but blockade of β(3)-integrin only inhibited migration effectively for 20-day cultures. Flow cytometry indicated that there was no net increase in expression of β1- or β3-integrins during neutrophil migration, and that their specific subendothelial function was likely dependent on turnover of integrins during migration. These studies show that BM is a distinct barrier to migration of human neutrophils, and that β(3)-integrins are particularly important in crossing this barrier. The lesser effect of BM on lymphocytes and monocytes supports the concept that crossing the BM is a separate, leukocyte-specific, regulated step in migration.
Original languageEnglish
Pages (from-to)276-92
Number of pages17
JournalExperimental Cell Research
Volume317
Issue number3
DOIs
Publication statusPublished - 1 Feb 2011

Fingerprint

Dive into the research topics of 'Delay of migrating leukocytes by the basement membrane deposited by endothelial cells in long-term culture.'. Together they form a unique fingerprint.

Cite this