Deep learning based Image reconstruction for MRI guided near infra-red spectral tomography

Jinchao Feng, Wanlong Zhang, Kebin Jia, Shudong Jiang, Hamid Dehghani, Brian Pogue, Keith D. Paulsen

Research output: Contribution to journalArticlepeer-review

Abstract

Non-invasive Near infrared spectral tomography (NIRST) can incorporate the structural information provided by simultaneous magnetic resonance imaging (MRI), and this has significantly improved the images obtained of tissue function. However, the process of MRI-guidance in NIRST has been time consuming because of the needs for tissue-type segmentation and forward diffuse modeling of light propagation. To overcome these problems, a novel reconstruction algorithm for MRI guided NIRST based on deep learning has been proposed and validated by simulation and real patient imaging data for breast cancer characterization. In this approach, diffused optical signals and MRI images were both used as the input to the neural network, and simultaneously recovered the concentrations of oxy-hemoglobin, deoxy-hemoglobin, and water via end-to-end training by using 20, 000 sets of computer generated simulation phantoms. The simulation phantom studies showed that the quality of the re-constructed images have been improved, when compared to that obtained by other existing reconstruction methods. Reconstructed patient images show that the well-trained neural network with only simulation data sets can be directly used for differentiating the malignant, from benign breast tumor.
Original languageEnglish
Pages (from-to)264-267
JournalOptica
Volume9
Issue number3
Early online date24 Feb 2022
DOIs
Publication statusPublished - Mar 2022

Fingerprint

Dive into the research topics of 'Deep learning based Image reconstruction for MRI guided near infra-red spectral tomography'. Together they form a unique fingerprint.

Cite this