Abstract
T cells infiltrating the inflamed liver express high levels of CXCR 3 and show enhanced migration to CXCR 3 ligands in chemotactic assays. Moreover, CXCR 3 ligands are up-regulated on hepatic endothelium at sites of T-cell infiltration in chronic hepatitis, and their presence correlates with outcome of inflammatory liver disease. We used a flow-based adhesion assay with human hepatic endothelium to investigate the function of CXCR 3 on lymphocyte adhesion to and transmigration through hepatic endothelium under physiological conditions of blood flow. To more accurately model the function of in vivo activated CXCR 3(high) lymphocytes, we isolated T cells from human liver tissue and studied their behavior in flow-based adhesion assays. We demonstrate that CXCR 3 not only promoted the adhesion of effector T cells to endothelium from flow but also drove transendothelial migration. Moreover, these responses could be stimulated either by endogenous CXCR 3 ligands secreted by the endothelium or by exogenous CXCR 3 ligands derived from other cell types and presented by the endothelium. This study thus demonstrates that activation of CXCR 3 promotes lymphocyte adhesion and transendothelial migration under flow and that human hepatic endothelium can present functionally active chemokines secreted by other cell types within the liver.
Original language | English |
---|---|
Pages (from-to) | 887-899` |
Journal | The American Journal of Pathology |
Volume | 167 |
Issue number | 3 |
Publication status | Published - 1 Jan 2005 |