Abstract
Magma crystallisation is a fundamental process driving eruptions and controlling the style of volcanic activity. Crystal nucleation delay, heterogeneous and homogeneous nucleation and crystal growth are all time-dependent processes, however, there is a paucity of real-time experimental data on crystal nucleation and growth kinetics, particularly at the beginning of crystallisation when conditions are far from equilibrium. Here, we reveal the first in situ 3D
time-dependent observations of crystal nucleation and growth kinetics in a natural magma, reproducing the crystallisation occurring in real-time during a lava flow, by combining a bespoke high-temperature environmental cell with fast synchrotron X-ray microtomography. We find that both crystal nucleation and growth occur in pulses, with the first crystallisation wave producing a relatively low volume fraction of crystals and hence negligible influence
time-dependent observations of crystal nucleation and growth kinetics in a natural magma, reproducing the crystallisation occurring in real-time during a lava flow, by combining a bespoke high-temperature environmental cell with fast synchrotron X-ray microtomography. We find that both crystal nucleation and growth occur in pulses, with the first crystallisation wave producing a relatively low volume fraction of crystals and hence negligible influence
| Original language | English |
|---|---|
| Article number | 8377 |
| Journal | Scientific Reports |
| Volume | 8 |
| DOIs | |
| Publication status | Published - 30 May 2018 |