Projects per year
Abstract
The tunable orbit angular momentum (OAM) of surface plasmon polaritons (SPPs) is theoretically studied with appropriately designed metasurfaces. By controlling both the orientation angle and the spatial position of a nano aperture array on an ultrathin gold film, the field distributions of the surface waves can be engineered to contain both spin dependent and independent OAM components. Simultaneous control over the geometric phase and the optical path difference induced phase (dynamic phase) provides extra degrees of freedom for manipulating the OAM of SPPs. We show that an arbitrary combination of OAM numbers can be realized for the SPPs excited by incident light of different circular polarizations. Our results provide powerful control over the OAM of SPPs, which will have potential applications in optical trapping, imaging, communications and even quantum information processing.
Original language | English |
---|---|
Pages (from-to) | 4944-4949 |
Journal | Nanoscale |
Volume | 9 |
Early online date | 22 Mar 2017 |
DOIs | |
Publication status | Published - 2017 |
Fingerprint
Dive into the research topics of 'Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases'. Together they form a unique fingerprint.Projects
- 1 Finished
-
NSF Materials World Network: Classical and Quantum Optical Metamaterials by Combining Top-down and Bottom-Up Fabrication Techniques
Zhang, S. (Principal Investigator)
Engineering & Physical Science Research Council
1/02/13 → 31/01/16
Project: Research Councils