Abstract
Linear arrays of hydrogen bonds are useful for the reversible assembly of "stimuli-responsive" supramolecular materials. There is thus an ongoing requirement for easy-to-synthesise motifs that are capable of presenting hydrogen-bonding functionality in a predictable manner, such that high-affinity and high-fidelity recognition occurs. The design of linear arrays is made challenging as a consequence of their ability to adopt multiple conformational and tautomeric configurations; with each additional hydrogen-bonding heteroatom added to an array, the available tautomeric and conformational space increases and it can be difficult to anticipate where unproductive conformers/tautomers will arise. This paper describes a detailed study on the complementary ureidoimidazole donor-donor-acceptor (DDA) array (1) and amidoisocytosine donor-acceptor-acceptor (DAA) array (2). A specific feature of 1 is that two degenerate, intramolecular hydrogen-bonded conformations are postulated, both of which present a DDA array that is complementary to appropriate DAA partners. 1D and 2D 1H NMR spectroscopy, isothermal titration calorimetry, and ab initio structure calculations confirm 1 interacts with 2 (K a≈ 33000 M -1 in CDCl 3) in a conformer-independent fashion driven by enthalpy. Comparison of the binding behaviour of 1 with hexylamidocytosine (4) and amidonaphthyridine (5) provides insight on the role that intramolecular hydrogen-bonding plays in mediating affinity towards DAA partners.
Original language | English |
---|---|
Pages (from-to) | 14508-14517 |
Number of pages | 10 |
Journal | Chemistry - A European Journal |
Volume | 17 |
Issue number | 51 |
DOIs | |
Publication status | Published - 16 Dec 2011 |
Keywords
- hydrogen bonds
- linear arrays
- molecular recognition
- self-assembly
- supramolecular chemistry
ASJC Scopus subject areas
- Catalysis
- Organic Chemistry