Abstract
We show that water-soluble gold thiocyanate salt [KAu(SCN)4] spontaneously formed electrically-conductive and surface enhanced Raman scattering (SERS)-active films at the interface between water and pentane. Microscopy and spectroscopic analyses reveal that the films comprised of condensed Au nanoparticles, assembled via crystallization of KAu(SCN)4 and self-reduction of the Au3+ ions by the thiocyanate ligands. Importantly, the pentane phase was crucial in promoting the crystallization/reduction reactions. The Au films exhibited useful applications, including excellent conductivity and SERS sensing. We also show that the new film self-assembly process could be readily harnessed for producing macro-scale Au patterns.
Original language | English |
---|---|
Pages (from-to) | 33326-33331 |
Journal | RSC Advances |
Volume | 6 |
Issue number | 40 |
DOIs | |
Publication status | Published - 29 Mar 2016 |