Code-to-code verification for thermal models of melting and solidification in a metal alloy: Comparisons between a Finite Volume Method and a Finite Element Method

Anna M.V. Harley*, Sagar H. Nikam, Hao Wu, Justin Quinn, Shaun McFadden

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Verification, the process of checking a modelling output against a known reference model, is an important step in model development for the simulation of manufacturing processes. This manuscript provides details of a code-to-code verification between two thermal models used for simulating the melting and solidification processes in a 316 L stainless steel alloy: one model was developed using a non-commercial code and the Finite Volume Method (FVM) and the other used a commercial Finite Element Method (FEM) code available within COMSOL Multiphysics®. The application involved the transient case of heat-transfer from a point heat source into one end of a cylindrical sample geometry, thus melting and then re-solidifying the sample in a way similar to an autogenous welding process in metal fabrication. Temperature dependent material properties and progressive latent heat evolution through the freezing range of the alloy were included in the model. Both models were tested for mesh independency, permitting meaningful comparisons between thermal histories, temperature profiles and maximum temperature along the length of the cylindrical rod and melt pool depth. Acceptable agreement between the results obtained by the non-commercial and commercial models was achieved. This confidence building step will allow for further development of point-source heat models, which has a wide variety of applications in manufacturing processes.

Original languageEnglish
Pages (from-to)125-135
Number of pages11
JournalMechanical Sciences
Volume11
Issue number1
DOIs
Publication statusPublished - 23 Apr 2020

Bibliographical note

Funding Information:
Financial support. This research has been supported by the INTERREGVA (Project ID: IVA5055, Project Reference Number: 047).

Funding Information:
Acknowledgements. The North West Centre for Advanced Manufacturing (NW CAM) project is supported by the European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB).

Publisher Copyright:
© 2020 Author(s).

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Civil and Structural Engineering
  • Mechanics of Materials
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Code-to-code verification for thermal models of melting and solidification in a metal alloy: Comparisons between a Finite Volume Method and a Finite Element Method'. Together they form a unique fingerprint.

Cite this