Abstract
Vibrational spectra of Au n Ag m + · Ar k (n + m = 4, 5; k = 1-4) clusters are determined by far-infrared resonant multiple photon dissociation spectroscopy in the range ν = 100 -250 cm<sup>-1</sup>. The experimental spectra are assigned using density functional theory for geometries obtained by the Birmingham cluster genetic algorithm. Putative global minimum candidates of the Ar complexes are generated by adding Ar atoms to the Au n Ag m + low energy isomers and subsequent local optimization. Differential Ar binding energies indicate exceptionally strong Au-Ar bonds in Au-rich clusters, leading to fundamental changes to the IR spectra. The stronger Ar binding is attributed to a relativistically enhanced covalent character of the Au-Ar bond, while in Au-rich species charge-induced dipole interactions overcompensate the relativistic affinity to Au. Moreover, not only the absolute composition but also the topologies are essential in the description of Ar binding to a certain cluster.
Original language | English |
---|---|
Article number | 024310 |
Journal | Journal of Chemical Physics |
Volume | 143 |
Issue number | 2 |
DOIs | |
Publication status | Published - 14 Jul 2015 |
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Physical and Theoretical Chemistry