TY - JOUR
T1 - Cell proliferation and CD11b expression are controlled independently during HL60 differentiation initiated by 1,25α dihydroxyvitamin D3 or all-trans-retinoic acid
AU - Drayson, Mark
AU - Michell, Robert
AU - Durham, Jennifer
AU - Brown, Geoffrey
PY - 2001/5/15
Y1 - 2001/5/15
N2 - When 1 alpha,25-dihydroxyvitamin D(3) (D(3)) induces HL60 cells to differentiate to monocytes, a burst of approximately three shortened cell cycles ("maturation divisions") precedes exit from cell cycle and completion of maturation. Here we show that similar maturation divisions occur during neutrophil differentiation induced by all-trans-retinoic acid (ATRA), but without shortening of the cell cycle. Both ATRA and D(3) initiate these maturation divisions as cells pass through a "window of sensitivity" during early G1. We also investigated whether the initiation of maturation divisions and of the expression of CD11b, an early-expressed maturation marker, are linked. Cells treated with D(3) or ATRA start to express CD11b after 9--14 h, before completing the first maturation division. Elutriation was used to isolate small HL60 cells (almost all in G1) and larger cells (in G1 and S phases) from unsynchronized populations. When these were cultured with D(3) or ATRA, most reentered cycle synchronously, multiplied, and differentiated. Following D(3) treatment, the G1-enriched small cells expressed CD11b slightly faster than unsynchronized cultures or fractions dominated by late G1 cells and/or S phase cells. D(3)-induced CD11b expression occurred at a similar rate even in G1 cells that were held at the G1/S boundary by thymidine. In conclusion, changes in the control of the cell cycle that characterize the onset of monocytic and neutrophil differentiation are only triggered in early G1, but CD11b expression can be initiated from most points in the cell cycle. Differentiating agents must therefore regulate the proliferation and the maturation of differentiating myeloid cells by mechanisms that are at least partly independent.
AB - When 1 alpha,25-dihydroxyvitamin D(3) (D(3)) induces HL60 cells to differentiate to monocytes, a burst of approximately three shortened cell cycles ("maturation divisions") precedes exit from cell cycle and completion of maturation. Here we show that similar maturation divisions occur during neutrophil differentiation induced by all-trans-retinoic acid (ATRA), but without shortening of the cell cycle. Both ATRA and D(3) initiate these maturation divisions as cells pass through a "window of sensitivity" during early G1. We also investigated whether the initiation of maturation divisions and of the expression of CD11b, an early-expressed maturation marker, are linked. Cells treated with D(3) or ATRA start to express CD11b after 9--14 h, before completing the first maturation division. Elutriation was used to isolate small HL60 cells (almost all in G1) and larger cells (in G1 and S phases) from unsynchronized populations. When these were cultured with D(3) or ATRA, most reentered cycle synchronously, multiplied, and differentiated. Following D(3) treatment, the G1-enriched small cells expressed CD11b slightly faster than unsynchronized cultures or fractions dominated by late G1 cells and/or S phase cells. D(3)-induced CD11b expression occurred at a similar rate even in G1 cells that were held at the G1/S boundary by thymidine. In conclusion, changes in the control of the cell cycle that characterize the onset of monocytic and neutrophil differentiation are only triggered in early G1, but CD11b expression can be initiated from most points in the cell cycle. Differentiating agents must therefore regulate the proliferation and the maturation of differentiating myeloid cells by mechanisms that are at least partly independent.
KW - retinoic acid
KW - vitamin D-3
KW - proliferation
KW - HL60 cells
KW - differentiation
KW - gene expression
KW - cell cycle
KW - CD11b
UR - http://www.scopus.com/inward/record.url?scp=0035872253&partnerID=8YFLogxK
U2 - 10.1006/excr.2001.5200
DO - 10.1006/excr.2001.5200
M3 - Article
C2 - 11339831
SN - 0014-4827
VL - 266
SP - 126
EP - 134
JO - Experimental Cell Research
JF - Experimental Cell Research
IS - 1
ER -