TY - JOUR
T1 - Carbamylated LL-37 as a modulator of the immune response
AU - Koro, Catalin
AU - Hellvard, Annelie
AU - Delaleu, Nicolas
AU - Binder, Veronika
AU - Scavenius, Carsten
AU - Bergum, Brith
AU - Główczyk, Izabela
AU - Roberts, Helen
AU - Chapple, Iain
AU - Grant, Melissa
AU - Rapala-Kozik, Maria
AU - Klaga, Kinga
AU - Enghild, Jan
AU - Mydel, Piotr
PY - 2016/3/22
Y1 - 2016/3/22
N2 - Carbamylation of lysine residues and protein N-termini is a ubiquitous, non-enzymatic post-translational modification. Carbamylation at sites of inflammation is due to cyanate formation during the neutrophil oxidative burst and may target lysine residues within the antimicrobial peptide LL-37. The bactericidal and immunomodulatory properties of LL-37 depend on its secondary structure and cationic nature, which are conferred by arginine and lysine residues. Therefore, carbamylation may affect the biological functions of LL-37. The present study examined the kinetics and pattern of LL-37 carbamylation to investigate how this modification affects the bactericidal, cytotoxic, and immunomodulatory function of the peptide. The results indicated that LL-37 undergoes rapid modification in the presence of physiological concentrations of cyanate, yielding a spectrum of diverse carbamylated peptides. Mass spectrometry analyses revealed that the N-terminal amino group of Leu-1 was highly reactive and was modified almost instantly by cyanate to generate the predominant form of the modified peptide, named LL37C1. This was followed by the sequential carbamylation of Lys-8, Lys-12, and Lys-15, to yield LL37C8, and LL37C12,15, respectively. Carbamylation had profound and diverse effects on the structure and biological properties of LL-37. In some cases, anti-inflammatory LL-37 was rapidly converted to pro-inflammatory LL-37.
AB - Carbamylation of lysine residues and protein N-termini is a ubiquitous, non-enzymatic post-translational modification. Carbamylation at sites of inflammation is due to cyanate formation during the neutrophil oxidative burst and may target lysine residues within the antimicrobial peptide LL-37. The bactericidal and immunomodulatory properties of LL-37 depend on its secondary structure and cationic nature, which are conferred by arginine and lysine residues. Therefore, carbamylation may affect the biological functions of LL-37. The present study examined the kinetics and pattern of LL-37 carbamylation to investigate how this modification affects the bactericidal, cytotoxic, and immunomodulatory function of the peptide. The results indicated that LL-37 undergoes rapid modification in the presence of physiological concentrations of cyanate, yielding a spectrum of diverse carbamylated peptides. Mass spectrometry analyses revealed that the N-terminal amino group of Leu-1 was highly reactive and was modified almost instantly by cyanate to generate the predominant form of the modified peptide, named LL37C1. This was followed by the sequential carbamylation of Lys-8, Lys-12, and Lys-15, to yield LL37C8, and LL37C12,15, respectively. Carbamylation had profound and diverse effects on the structure and biological properties of LL-37. In some cases, anti-inflammatory LL-37 was rapidly converted to pro-inflammatory LL-37.
U2 - 10.1177/1753425916631404
DO - 10.1177/1753425916631404
M3 - Article
SN - 1753-4259
JO - Innate immunity
JF - Innate immunity
ER -